1
|
Carve M, Singh N, Askeland M, Allinson G, Shimeta J. Salting-out assisted liquid-liquid extraction combined with LC-MS/MS for the simultaneous determination of seven organic UV filters in environmental water samples: method development and application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104870-104885. [PMID: 37710061 PMCID: PMC10567945 DOI: 10.1007/s11356-023-29646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Organic UV filters (OUVFs), the active ingredient in sunscreens, are of environmental concern due to reported ecotoxicological effects in aquatic biota. Determining the environmental concentrations of these chemicals is essential for understanding their fate and potential environmental risk. Salting-out assisted liquid-liquid extraction (SALLE) coupled with liquid-chromatography tandem mass spectrometry (LC-MS/MS) was developed for simultaneous extraction, separation, and quantification of seven OUVFs (2,4-dihydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 4-methylbenzylidene camphor, butyl-methoxy-dibenzoyl methane, octocrylene, octyl methoxycinnamate, and oxybenzone). Method detection limits (MDLs) ranged from 11 to 45 ng/L and practical quantification limits (PQLs) from 33 to 135 ng/L. Method trueness, evaluated in terms of recovery, was 69-127%. Inter-day and intra-day variability was < 6% RSD. The coefficients of determination were > 0.97. The method was applied to river and seawater samples collected at 19 sites in and near Port Phillip Bay, Australia, and temporal variation in OUVF concentrations was studied at two sites. Concentrations of OUVF were detected at 10 sites; concentrations of individual OUVFs were 51-7968 ng/L, and the maximum total OUVF concentration detected at a site was 8431 ng/L. Recreational activity and water residence time at the site contributed to OUVF's environmental presence and persistence. The benefits of the SALLE-LC-MS/MS method include its simple operation, good selectivity, precision over a wide linear range, and that obtained extracts can be directly injected into the LC-MS/MS, overall making it an attractive method for the determination of these OUVFs in environmental water matrices. To our knowledge, this is the first report of the occurrence of OUVFs in Port Phillip Bay, Australia.
Collapse
Affiliation(s)
- Megan Carve
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Navneet Singh
- School of Science, RMIT University, Melbourne, VIC, Australia
- ADE Consulting Group, Williamstown North, VIC, 3016, Australia
| | | | - Graeme Allinson
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Šukele R, Lauberte L, Kovalcuka L, Logviss K, Bārzdiņa A, Brangule A, Horváth ZM, Bandere D. Chemical Profiling and Antioxidant Activity of Tanacetum vulgare L. Wild-Growing in Latvia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1968. [PMID: 37653885 PMCID: PMC10221018 DOI: 10.3390/plants12101968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 07/15/2023]
Abstract
The Tanacetum vulgare L. (Tansy) has several ethnobotanical uses, mostly related to the essential oil and sesquiterpene lactones, whereas information regarding other compounds is scarce. This research is designed to characterize the phenolic compounds (flavonoids, phenolic acids, and tannins) to analyze the thujone (which is toxic in high concentrations) content and to detect the antioxidant activity (DPPH assay) of extracts. The main highlights of our work provide a chemical profile of phenolic compounds of T. vulgare harvested from different regions of Latvia, as well as simultaneously support the ethnomedicinal uses for wild T. vulgare through the integration of phenolic compounds as one of the value constituents of leaves and flowers. The extraction yield was 18 to 20% for leaves and 8 to 16% for flowers. The total phenol content in the extracts of T. vulgare as well as their antioxidant activity was different between collection regions and the aerial parts ranging from 134 to 218 mg GAE/g and 32 to 182 mg L-1, respectively. A remarkable variation in the thujone (α + β) content (0.4% up to 6%) was detected in the extracts. T. vulgare leaf extracts were rich in tannins (up to 19%). According to the parameters detected, the extracts of T. vulgare could be considered promising for the development of new herbal products.
Collapse
Affiliation(s)
- Renāte Šukele
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Department of Pharmaceuticals, Red Cross Medical College of Riga Stradiņš University, LV-1009 Riga, Latvia
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Liga Kovalcuka
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Konstantins Logviss
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Ance Bārzdiņa
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Zoltán Márk Horváth
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| |
Collapse
|
3
|
Yang SH, Choi H. Simultaneous determination of nereistoxin insecticides in foods of animal origins by combining pH-dependent reversible partitioning with hydrophilic interaction chromatography-mass spectrometry. Sci Rep 2022; 12:10208. [PMID: 35715575 PMCID: PMC9205972 DOI: 10.1038/s41598-022-14520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Although nereistoxin insecticides (NIs) are banned for animal husbandry operations, they are still used because of their high insecticidal activities. Therefore, a reliable residue analysis method for the simultaneous detection of cartap, bensultap, thiocyclam, and nereistoxin in foods of animal origins, including beef, pork, chicken, milk, and eggs, was developed using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-LC-MS/MS). The NIs were extracted with an acidic cysteine and formate buffer solution and hydrolyzed to nereistoxin. The molarity and pH of the buffer were optimized at 20 mM and 3, respectively, to keep the pH of the extracts at 4-5. pH-dependent acid-base partitioning coupled with salting-out-assisted liquid-liquid extraction using acetonitrile was performed for purification and for the direct introduction of the extracts to LC. The optimal pH values were 5 and 9 for the acid-base partitioning. Nereistoxin quantitation was achieved with consistent column retention (RSD < 0.6%) and a high degree of separation (N > 106). The matrix-dependent method limit of quantitation was 2 μg nereistoxin/kg, and the calibration curve showed good linearity (R2 > 0.998). The recovery efficiencies were in the range of 89.2-109.9% with relative standard deviations less than 10%, and matrix effects did not exceed ± 10%, which satisfied the criteria outlined in the European SANTE/12682/2019 guidelines.
Collapse
Affiliation(s)
- Seung-Hyun Yang
- Department of Life and Environmental Sciences, Wonkwang University, Iksan, 54538, Republic of Korea.,Institute of Life Science and Natural Resources, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hoon Choi
- Department of Life and Environmental Sciences, Wonkwang University, Iksan, 54538, Republic of Korea. .,Institute of Life Science and Natural Resources, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
4
|
Pisharody L, Gopinath A, Malhotra M, Nidheesh PV, Kumar MS. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. CHEMOSPHERE 2022; 287:132216. [PMID: 34517234 DOI: 10.1016/j.chemosphere.2021.132216] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Landfilling is the most prominently adopted disposal technique for managing municipal solid waste across the globe. However, the main drawback associated with this method is the generation of leachate from the landfill site. Leachate, a highly concentrated liquid consisting of both organic and inorganic components arises environmental issues as it contaminates the nearby aquifers. Landfill leachate treatment by conventional methods is not preferred as the treatment methods are not much effective to remove these pollutants. Advanced oxidation processes (AOPs) based on both hydroxyl and sulfate radicals could be a promising method to remove the micropollutants completely or convert them to non-toxic compounds. The current review focuses on the occurrence of micropollutants in landfill leachate, their detection methods and removal from landfill leachate using AOPs. Pharmaceuticals and personal care products occur in the range of 10-1 to more than 100 μg L-1 whereas phthalates were found below the detectable limit to 384 μg L-1, pesticides in the order of 10-1 μg L-1 and polyaromatic hydrocarbons occur in concentration from 10-2 to 114.7 μg L-1. Solid-phase extraction is the most preferred method for extracting micropollutants from leachate and liquid chromatography (LC) - mass spectrophotometer (MS) for detecting the micropollutants. Limited studies have been focused on AOPs as a potential method for the degradation of micropollutants in landfill leachate. The potential of Fenton based techniques, electrochemical AOPs and ozonation are investigated for the removal of micropollutants from leachate whereas the applicability of photocatalysis for the removal of a wide variety of micropollutants from leachate needs in-depth studies.
Collapse
Affiliation(s)
- Lakshmi Pisharody
- The Zuckerberg Institute of Water Research, Ben-Gurion University, Israel
| | - Ashitha Gopinath
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Milan Malhotra
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
5
|
Pasupuleti RR, Gurrani S, Tsai PC, Ponnusamy VK. Novel Salt-Assisted Liquid-Liquid Microextraction Technique for Environmental, Food, and Biological Samples Analysis Applications: A Review. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411017999201228212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Sample preparation has gained significant recognition in the chemical analysis workflow. Substantial efforts have been made to simplify the comprehensive process of sample preparation that is focused on green sample preparation methodology, including the miniaturization of extraction method, elimination of the sample pre-treatment as well as the post-treatment steps, elimination of toxic as well as hazardous organic solvent consumption, reduction in sample volume requirements, reducing the extraction time, maximization of the extraction efficiency and possible automation.
Methods::
Among various microextraction processes, liquid-phase microextraction (LPME) is most abundantly used in the extraction of the target analytes. The salting-out phenomenon has been introduced into the LPME procedure and has been raised as a new technique called the ‘Salt-Assisted Liquid-Liquid Microextraction (SALLME)’. The principle is based on decreasing the solubility of less polar solvent or analyte with an increase in the concentration of the salt in aqueous solution leading to two-phase separation.
Conclusion::
SALLME proved to be a simple, rapid, and cost-effective sample preparation technique for the efficient extraction and preconcentration of organic and inorganic contaminants from various sample matrices, including environmental, biological, and food samples. SALLME exhibits higher extraction efficiency and recovery and compatible with multiple analytical instruments. This review provides an overview of developments in SALLME technique and its applications to till date.
Collapse
Affiliation(s)
- Raghavendra Rao Pasupuleti
- Department of Medicinal and Applied Chemistry, Nano and Green Analytical Lab, Kaohsiung Medical University (KMU), Kaohsiung City-807,, Taiwan
| | - Swapnil Gurrani
- Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City-807,, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Nano and Green Analytical Lab, Kaohsiung Medical University (KMU), Kaohsiung City-807,, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City-804,, Taiwan
| |
Collapse
|
6
|
Salting-out Assisted Liquid–Liquid Extraction for Analysis of Caffeine and Nicotinic Acid in Coffee by HPLC–UV/Vis Detector. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00148-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|