1
|
Xiao N, Zhang Q, Xu H, Zheng C, Yin Y, Liu S, Shi W. Effect of Lactobacillus plantarum and flavourzyme on protein degradation and flavor development in grass carp during fermentation. Food Chem X 2024; 22:101439. [PMID: 38756472 PMCID: PMC11096861 DOI: 10.1016/j.fochx.2024.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/07/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
This study examined the effect of Flavourzyme and Lactobacillus plantarum (L. plantarum) on protein degradation and flavor development during grass carp fermentation. The control groups comprised natural fermentation and fermentation with L. plantarum. Compared with the two control samples, those exposed to combined Flavourzyme and L. plantarum fermentation exhibited lower moisture content and enhanced protein hydrolysis, which accelerated the production of water-soluble taste substances (trichloroacetic acid-soluble peptides and free amino acids). The electronic tongue and electronic nose results indicated that the grass carp subjected to combined fermentation way displayed a more intense umami taste and aroma. Moreover, the sensory evaluation results confirmed that the combined fermentation method significantly improved the taste and odor attributes of fermented grass carp. In conclusion, combined fermentation with Flavourzyme and L. plantarum may effectively reduce fermentation time and enhance the flavor of fermented grass carp products.
Collapse
Affiliation(s)
- Naiyong Xiao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Qiang Zhang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huiya Xu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Changliang Zheng
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Jia S, Jia Z, An J, Ding Y, Chang J, Wang Y, Zhou X. Insights into the fish protein degradation induced by the fish-borne spoiler Pseudomonas psychrophila and Shewanella putrefaciens: From whole genome sequencing to quality changes. Int J Food Microbiol 2024; 416:110675. [PMID: 38479336 DOI: 10.1016/j.ijfoodmicro.2024.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
The aim of this study is evaluating the protein degradation capacity of specific spoilage organisms (SSOs) Pseudomonas psychrophila and Shewanella putrefaciens in fish flesh during chilled storage and revealing the underlying genes by whole-genome sequencing (WGS). Biochemical and physical tests were performed on fish flesh inoculated with P. psychrophila and S. putrefaciens individually, including textural properties, myofibrillar fragmentation index, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles, free amino acid composition, total volatile basic nitrogen (TVB-N), trichloroacetic acid (TCA) soluble peptides, and muscle microstructure. Results showed that P. psychrophila and S. putrefaciens exhibited a strong capacity for decomposing the fish protein, and the deterioration of fish flesh texture was primarily attributed to P. psychrophila. The genes from SSOs associated with the production of proteases were identified by whole genome sequencing and serine protease may be the primary enzyme secreted by SSOs involved in the degradation of fish protein. Therefore, the present study has shed light on the mechanisms of protein degradation induced by SSOs, thereby offering valuable insights for the development of effective quality control strategies.
Collapse
Affiliation(s)
- Shiliang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Jinghai Group Co., Ltd, Weihai 264307, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Zhifang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Jun An
- Natural Medicine Institute of Zhejiang YangShengTang Co., Ltd., Hangzhou 310024, China.
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Jie Chang
- Jinghai Group Co., Ltd, Weihai 264307, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China.
| |
Collapse
|
3
|
Effect of boiling on texture of scallop adductor muscles and its mechanism based on label-free quantitative proteomic technique. Food Chem 2023; 414:135723. [PMID: 36821928 DOI: 10.1016/j.foodchem.2023.135723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The mechanism behind textural changes in scallop adductor muscle during boiling was investigated through proteomic analysis, determination of water holding capacity (WHC) and oxidative indices, as well as observation with scanning electron microscopy and multiphoton nonlinear optical microscopy. The hardness and shear force showed the trend of first rising and then falling in 45 min-boiling time. The results suggested that short-time boiling caused the oxidation, denaturation and aggregation of proteins, resulting in the transverse contraction of myofibers and lateral cross-linked aggregation of muscle fibers and a rise in WHC, which led to the increase in hardness and shear force. While long-time boiling caused the progressive degradation of structural proteins such as fibrillin-1, collagen alpha-2(I) chain, myosin heavy chain, basement membrane-specific heparan sulfate proteoglycan core protein, and paramyosin, resulting in a loose myofibril network and the decrease in WHC, which led to the decrease in hardness and shear force.
Collapse
|
4
|
Studying on effects of boiling on texture, microstructure and physiochemical properties of sea cucumber body wall and its mechanism using second harmonic generation (SHG) microscopy. Food Chem 2023; 400:134055. [DOI: 10.1016/j.foodchem.2022.134055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
|
5
|
Hu P, Ali U, Aziz T, Wang L, Zhao J, Nabi G, Sameeh MY, Yu Y, Zhu Y. Investigating the effect on biogenic amines, nitrite, and N-nitrosamine degradation in cultured sausage ripening through inoculation of Staphylococcus xylosus and lactic acid bacteria. Front Microbiol 2023; 14:1156413. [PMID: 36970674 PMCID: PMC10033708 DOI: 10.3389/fmicb.2023.1156413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Microbial inoculants can reinvent the value and edible security of cultured sausages. Various studies have demonstrated that starter cultures made up of Lactic acid bacteria (LAB) and Staphylococcus xylosus (known as L-S) isolated from traditional fermented foods were used in fermented sausage manufacturing. Methods This study evaluated the impact of the mixed inoculation cultures on limiting biogenic amines, nitrite depletion, N-nitrosamine reduction, and quality metrics. Inoculation of sausages with the commercial starter culture (SBM-52) was evaluated for comparison. Results and discussion Results showed that the L-S strains could rapidly decrease the water activity (Aw) and pH of fermented sausages. The ability of the L-S strains to delay lipid oxidation was equivalent to the SBM-52 strains. The non-protein nitrogen (NPN) contents of L-S-inoculated sausages (0.31%) were higher than that of SBM-52-inoculated sausages (0.28%). After the ripening process, the nitrite residues in the L-S sausages were 1.47 mg/kg lower than in the SBM-52 sausages. Compared to the SBM-52 sausages, there was a 4.88 mg/kg reduction in the biogenic amines' concentrations in L-S sausage, especially for histamine and phenylethylamine concentrations. The N-nitrosamine accumulations of the L-S sausages (3.40 ug/kg) were lower than that of the SBM-52 sausages (3.70 ug/kg), and the NDPhA accumulations of the L-S sausages were 0.64 ug/kg lower than that of the SBM-52 sausages. Due to their significant contributions to nitrite depletion, biogenic amine reduction, and N-nitrosamine depletion in fermented sausages, the L-S strains have the potential to serve as an initial inoculant in the process of manufacturing fermented sausages.
Collapse
Affiliation(s)
- Panpan Hu
- Department of Life Science, Lyuliang University, Lishi, Shanxi, China
| | - Urooj Ali
- Department of Biotechnology, Quaid e Azam University, Islamabad, Pakistan
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Wang
- Department of Life Science, Lyuliang University, Lishi, Shanxi, China
| | - Jianying Zhao
- Department of Life Science, Lyuliang University, Lishi, Shanxi, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Manal Y. Sameeh
- Department of Chemistry, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yanqin Yu
- Department of Life Science, Lyuliang University, Lishi, Shanxi, China
- *Correspondence: Yanqin Yu, ; Yingchun Zhu,
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- *Correspondence: Yanqin Yu, ; Yingchun Zhu,
| |
Collapse
|
6
|
Xiao N, Xu H, Guo Q, Shi W. Effects of flavourzyme addition on protein degradation and flavor formation in grass carp during fermentation. J Food Biochem 2022; 46:e14405. [PMID: 36121197 DOI: 10.1111/jfbc.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate the effects of flavourzyme addition on protein degradation and flavor formation in grass carp during fermentation. The related results showed that the addition of flavourzyme reduced the moisture content and accelerated the hydrolysis of protein and generation of water-soluble flavor substances (e.g., TCA-soluble peptides, α-amino nitrogen, and free amino acids), thereby contributing to fermented grass carp products with a better taste quality. Besides, radar map results of electronic tongue and electronic nose showed that flavourzyme addition gives fermented products a more intense umami taste and odor. Meanwhile, sensory evaluation results also further confirmed that the addition of flavourzyme significantly improved the sensory attributes of fermented grass carp products, especially the taste and odor attributes. Overall, flavourzyme addition may be an effective way to shorten fermentation time and improve the flavor quality of fermented grass carp products during fermentation. PRACTICAL APPLICATIONS: In this study, to study the effects of flavourzyme addition on protein degradation and flavor formation in grass carp during fermentation, the related indicators include the moisture content, total nitrogen, non-protein nitrogen, protein degradation index, TCA-soluble peptides, α-amino nitrogen, free amino acids, electronic tongue, electronic nose, and sensory attributes were analyzed. This study may provide some useful information for the improvement of fermentation methods and the production of high-quality fermented grass carp products.
Collapse
Affiliation(s)
- Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huiya Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| |
Collapse
|
7
|
Supercooling phenomena in protein based food matrix composed of various fat, salt, and water contents. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
8
|
Wang Y, Zhou H, Zhou K, Han Q, Wang Z, Xu B. Study on the roles of microorganisms and endogenous enzymes in the evolution of metabolic characteristics of lean portion during traditional Chinese bacon processing. Food Res Int 2022; 162:112087. [DOI: 10.1016/j.foodres.2022.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
|
9
|
Wang Y, Wu H, Shi W, Huang H, Shen S, Yang F, Chen S. Changes of the flavor substances and protein degradation of black carp (Mylopharyngodon piceus) pickled products during steaming. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4033-4041. [PMID: 33349966 DOI: 10.1002/jsfa.11038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Among various cooking methods, steaming is favored by many because it can cause less damage to nutrient components in muscle, retain the inherent food flavor, and reduce the generation of harmful substances. Steaming conditions are closely related to fish flavor, fat and protein oxidation, and digestibility. RESULTS The black carp steamed for 4 to 14 min was studied in this article based on sensory assessment, electronic tongue, free amino acids, adenosine triphosphate (ATP)-related compounds, total nitrogen and non-protein nitrogen to explore the effect of steaming time on the taste substances and protein degradation of pickled black carp. The experimental result showed that the meat steamed within 8 min tasted better, showing high tastiness. The sensory assessment score increased significantly to the maximum value of 82.33 at 6 min. The content of umami and sweet amino acids increased significantly to the maximum value of 1.6801 g kg-1 at 6 min. In the meantime, the IMP (inosine monophosphate) content was 1.9128 g kg-1 , with its taste activity value (TAV) reaching 7.65, which proved that IMP affected the taste most. Furthermore, the total nitrogen content was 30.77 g kg-1 , which meant protein degraded a great deal. Based on equivalent umami concentration (EUC) and its TAV, the meat tasted best at 6-8 min. The longer the steaming time, the faster the protein degradation and the more the flavor precursors. CONCLUSION The black carp pickled products (with a weight of 20 g, with the size of 3 cm × 3 cm × 2 cm) is suggested to be steamed for 6 to 8 min. This conclusion provides a theoretical basis for its better taste quality. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yixin Wang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Han Wu
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenzheng Shi
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiyuan Huang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Siyuan Shen
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Feng Yang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shi Chen
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Hu L, Ying Y, Zhang H, Liu J, Chen X, Shen N, Li Y, Hu Y. Advantages of liquid nitrogen freezing in long‐term frozen preservation of hairtail (
Trichiurus haumela
): Enzyme activity, protein structure, and tissue structure. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lingping Hu
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Fuli Institute of Food Science, Zhejiang University Hangzhou China
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| | - Yubin Ying
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Fuli Institute of Food Science, Zhejiang University Hangzhou China
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District Qingdao China
| | - Jialin Liu
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Fuli Institute of Food Science, Zhejiang University Hangzhou China
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| | - Xin Chen
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Fuli Institute of Food Science, Zhejiang University Hangzhou China
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| | - Ni Shen
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Fuli Institute of Food Science, Zhejiang University Hangzhou China
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| | - Yujin Li
- College of Food Science and Engineering Ocean University of China Qingdao China
- Sanya Ocean Institute, Ocean University of China Sanya Hainan China
| | - Yaqin Hu
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| |
Collapse
|
11
|
Kwon CW, Chang PS. Role of Endogenous Cathepsin L in Muscle Protein Degradation in Olive Flounder ( Paralichthys olivaceus) Surimi Gel. Molecules 2021; 26:molecules26071901. [PMID: 33800606 PMCID: PMC8037396 DOI: 10.3390/molecules26071901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the effect of endogenous cathepsin L on surimi gel produced from olive flounder (Paralichthys olivaceus). The amino acid sequences of six proteins predicted or identified as cathepsin L were obtained from the olive flounder genome database, and a phylogenetic analysis was conducted. Next, cathepsin L activity toward N-α-benzyloxycarbonyl-l-phenylalanyl-l-arginine-(7-amino-4-methylcoumarin) (Z-F-R-AMC) was detected in crude olive flounder extract and a crude enzyme preparation. A considerable decrease in the level of myosin heavy chain (MHC) in surimi occurred during autolysis at 60 °C. In contrast, the levels of actin, troponin-T, and tropomyosin decreased only slightly. To prevent protein degradation by cathepsin L, a protease inhibitor was added to surimi. In the presence of 1.0% protease inhibitor, the autolysis of olive flounder surimi at 60 °C was inhibited by 12.2%; the degree of inhibition increased to 44.2% as the inhibitor concentration increased to 3.0%. In addition, the deformation and hardness of modori gel increased as the inhibitor concentration increased to 2.0%. Therefore, cathepsin L plays an important role in protein degradation in surimi, and the quality of surimi gel could be enhanced by inhibiting its activity.
Collapse
Affiliation(s)
- Chang Woo Kwon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Pahn-Shick Chang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-4852
| |
Collapse
|
12
|
Application of artificial neural networks to predict multiple quality of dry-cured ham based on protein degradation. Food Chem 2020; 344:128586. [PMID: 33229149 DOI: 10.1016/j.foodchem.2020.128586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
This study investigated protein degradation and quality changes during the processing of dry-cured ham, and then established the multiple quality prediction model based on protein degradation. From the raw material to the curing period, proteolysis index of external samples were higher than that of internal samples, however, the difference gradually decreased from the drying period to the maturing period. Protein degradation can be used as indicators for controlling quality of the hams. With protein degradation index as input variables, the back propagation-artificial neural networks (BP-ANN) models were optimized, with training function of trainlm, transfer function of logsig in input-hidden layer and tansig in hidden-output layer, and 20 hidden layer neurons. Furthermore, the relative errors of predictive data and experimental data of 12 samples were approximately 0 with the BP-ANN model. Results indicated that the BP-ANN has great potential in predicting multiple quality of dry-cured ham based on protein degradation.
Collapse
|
13
|
|
14
|
High-CO 2 Modified Atmosphere Packaging with Superchilling (-1.3 °C) Inhibit Biochemical and Flavor Changes in Turbot ( Scophthalmus maximus) during Storage. Molecules 2020; 25:molecules25122826. [PMID: 32575384 PMCID: PMC7356536 DOI: 10.3390/molecules25122826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The effects of modified atmosphere packaging (MAP) in combination with superchilling (−1.3 °C) on the physicochemical properties, flavor retention, and organoleptic evaluation of turbot samples were investigated during 27 days storage. Results showed that high-CO2 packaging (70% or 60% CO2) combined with superchilling could reduce the productions of off-flavor compounds, including total volatile basic nitrogen (TVB-N) and ATP-related compounds. Twenty-four volatile organic compounds were determined by gas chromatography–mass spectrometry (GC/MS) during storage, including eight alcohols, 11 aldehydes, and five ketones. The relative content of off-odor volatiles, such as 1-octen-3-ol, 1-penten-3-ol, (E)-2-octenal, octanal, and 2,3-octanedione, was also reduced by high-CO2 packaging during superchilling storage. Further, 60% CO2/10% O2/30% N2 with superchilling (−1.3 °C) could retard the water migration on the basis of the water holding capacity, low field NMR, and MRI results, and maintain the quality of turbot according to organoleptic evaluation results during storage
Collapse
|
15
|
Protein degradation and structure changes of beef muscle during superchilled storage. Meat Sci 2020; 168:108180. [PMID: 32447186 DOI: 10.1016/j.meatsci.2020.108180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/07/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
This study investigated the effect of superchilled storage (-4 °C) on protein degradation and structural changes of beef steaks from M. longissimus lumborum compared with traditional chilling (2 °C) and frozen storage (-18 °C). Traditional chilling induced significantly greater degradation of troponin T and desmin, and more rapid loss of calpain activity, compared to superchilled or frozen storage treatments. The proteolysis of key myofibrillar proteins resulted in a sharp decline of WBSF values during traditional chilled storage. For frozen beef samples, no major changes were observed with respect to protein degradation or muscle structure during storage. However, superchilled samples exhibited wider gaps between muscle fibers at 12 weeks storage, associated with muscle fiber shrinkage.
Collapse
|
16
|
Xu Y, Yin Y, Zhao H, Li Q, Yi S, Li X, Li J. Effects of cinnamaldehyde combined with ultrahigh pressure treatment on the flavor of refrigerated Paralichthys olivaceus fillets. RSC Adv 2020; 10:12573-12581. [PMID: 35497606 PMCID: PMC9051048 DOI: 10.1039/d0ra01020k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/15/2020] [Indexed: 12/02/2022] Open
Abstract
The combined effects of cinnamaldehyde (CA) and ultrahigh pressure (UP) treatment on the flavor of olive flounder (Paralichthys olivaceus) fillets during storage at 4 °C for 20 days were investigated. Changes in total viable count, trimethylamine, ATP-related compounds, free amino acids, TCA-soluble peptides, electronic nose (E-nose) analysis and sensory quality were measured. The results indicated that CA and UP treatment, especially CA combined with UP, significantly reduced undesirable flavor compounds including inosine, hypoxanthine, TMA, and bitter amino acids, and accumulated pleasant flavor compounds such as inosine monophosphate and umami-related amino acids. In addition, the combination of CA and UP was shown to be more effective for retarding protein degradation and microbial growth than CA or UP treatment alone. In accordance with the results of E-nose analysis and sensory evaluation, CA combined with UP treatment had great potential for improving the flavor quality of refrigerated flounder fillets and extending their storage life. The combined effects of cinnamaldehyde (CA) and ultrahigh pressure (UP) treatment on the flavor of olive flounder (Paralichthys olivaceus) fillets during storage at 4 °C for 20 days were investigated.![]()
Collapse
Affiliation(s)
- Yongxia Xu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Yiming Yin
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Qiuying Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| |
Collapse
|
17
|
Xu Y, Yin Y, Li T, Zhao H, Li X, Li J, Sun T. Effects of lysozyme combined with cinnamaldehyde on storage quality of olive flounder (Paralichthys olivaceus) fillets. J Food Sci 2020; 85:1037-1044. [PMID: 32175601 DOI: 10.1111/1750-3841.14980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 01/26/2023]
Abstract
Effects of lysozyme (LYS) combined with cinnamaldehyde (CA) on quality enhancement of olive flounder (Paralichthys olivaceus) fillets during refrigerated storage at 4 °C for 20 days were assessed. Changes of total viable count (TVC), K-value, total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), texture profile analysis (TPA), and trichloroacetic acid-soluble peptide (TCA-soluble peptide) in samples were determined periodically. Results demonstrated that the combination of LYS and CA treatment enhanced the antibacterial activity against S. putrefaciens and P. fluorescens, and lowered TVC values. Meanwhile, LYS combined with CA significantly retarded the increases of TBA value, TVB-N, K-value, and TCA-soluble peptide content compared to the control. Furthermore, the combined treatment also effectively maintained the texture properties of flounder fillets during the storage period. The efficiency was better than that of LYS or CA treatment alone. Thus, LYS combined with CA is promising in olive flounder shelf life extension.
Collapse
Affiliation(s)
- Yongxia Xu
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Yiming Yin
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Tao Li
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Honglei Zhao
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Xuepeng Li
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Jianrong Li
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Tong Sun
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| |
Collapse
|
18
|
Leng Y, Sun Y, Wang X, Hou J, Zhao X, Zhang Y. Electrical impedance estimation for pork tissues during chilled storage. Meat Sci 2020; 161:108014. [DOI: 10.1016/j.meatsci.2019.108014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/24/2019] [Accepted: 11/18/2019] [Indexed: 01/30/2023]
|
19
|
Preservative Effects of Gelatin Active Coating Containing Eugenol and Higher CO 2 Concentration Modified Atmosphere Packaging on Chinese Sea bass ( Lateolabrax maculatus) during Superchilling (-0.9 °C) Storage. Molecules 2020; 25:molecules25040871. [PMID: 32079147 PMCID: PMC7070949 DOI: 10.3390/molecules25040871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
The purpose of this research was to explore the fresh keeping effect of modified atmosphere packaging (MAP) with different gas ratios combined with gelatin active coatings containing eugenol on Chinese sea bass stored at −0.9 °C for 36 days. The results showed that MAP3 (60% CO2/10% O2/30% N2), together with gelatin active coatings containing eugenol, could prevent water loss, which maintained high field NMR, MRI, and organoleptic evaluation results. This hurdle technology could also effectively delay the bacterial reproduction, protein degradation, and alkaline accumulation, so it showed the lowest K value, total volatile basic nitrogen, free amino acids, total viable count, Pseudomonas spp., and H2S-producing bacteria, which better maintain the quality of sea bass.
Collapse
|
20
|
Preservative Effects of Gelatin Active Coating Enriched with Eugenol Emulsion on Chinese Seabass (Lateolabrax maculatus) during Superchilling (−0.9 °C) Storage. COATINGS 2019. [DOI: 10.3390/coatings9080489] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This research was to evaluate the effects of gelatin (G) active coating containing eugenol/β-cyclodextrin (βCD) emulsions combined with superchilling (−0.9 °C) on physicochemical, microbiological, and organoleptic properties of Chinese seabass samples during 30 days of storage. Results showed that seabass samples dipped in G-βCD coatings containing 0.15% or 0.3% eugenol combined with superchilling could significantly lower the total volatile basic nitrogen, K value, total viable count, H2S-producing bacteria, Pseudomonas spp. and Psychrophilic counts, and free fatty acids. Further, G-βCD coatings containing eugenol with superchilling (−0.9 °C) were more effective in retarding the water migration by low field NMR and MRI results, maintaining quality of seabass during storage according to organoleptic evaluation results.
Collapse
|