1
|
Luo T, Lin X, Lai T, Long L, Lai Z, Du X, Guo X, Shuai L, Han D, Wu Z. GA 3 Treatment Delays the Deterioration of 'Shixia' Longan during the On-Tree Preservation and Room-Temperature Storage and Up-Regulates Antioxidants. Foods 2023; 12:foods12102032. [PMID: 37238852 DOI: 10.3390/foods12102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Gibberellic acids had been proven to improve the fruit quality and storability by delaying deterioration and maintaining the antioxidant system. In this study, the effect of GA3 spraying at different concentrations (10, 20, and 50 mg L-1) on the quality of on-tree preserved 'Shixia' longan was examined. Only 50 mg L-1 GA3 significantly delayed the decline of soluble solids (22.0% higher than the control) and resulted in higher total phenolics content (TPC), total flavonoid content (TFC), and phenylalanine ammonia-lyase activity in pulp at the later stages. The widely targeted metabolome analysis showed that the treatment reprogrammed secondary metabolites and up-regulated many tannins, phenolic acids, and lignans during the on-tree preservation. More importantly, the preharvest 50 mg L-1 GA3 spraying (at 85 and 95 days after flowering) led to significantly delayed pericarp browning and aril breakdown, as well as lower pericarp relative conductivity and mass loss at the later stages of room-temperature storage. The treatment also resulted in higher antioxidants in pulp (vitamin C, phenolics, and reduced glutathione) and pericarp (vitamin C, flavonoids, and phenolics). Therefore, preharvest 50 mg L-1 GA3 spraying is an effective method for maintaining the quality and up-regulating antioxidants of longan fruit during both on-tree preservation and room-temperature storage.
Collapse
Affiliation(s)
- Tao Luo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Tingting Lai
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Libing Long
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Ziying Lai
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Xinxin Du
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Xiaomeng Guo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Liang Shuai
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang 330032, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou 510640, China
| | - Zhenxian Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wang J, Li J, Li Z, Liu B, Zhang L, Guo D, Huang S, Qian W, Guo L. Genomic insights into longan evolution from a chromosome-level genome assembly and population genomics of longan accessions. HORTICULTURE RESEARCH 2022; 9:uhac021. [PMID: 35184175 PMCID: PMC9071379 DOI: 10.1093/hr/uhac021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 05/25/2023]
Abstract
Longan (Dimocarpus longan) is a subtropical fruit best known for its nutritious fruit and regarded as a precious tonic and traditional medicine since ancient times. High-quality chromosome-scale genome assembly is valuable for functional genomic study and genetic improvement of longan. Here, we report a chromosome-level reference genome sequence for longan cultivar JDB with an assembled genome of 455.5 Mb in size anchored to fifteen chromosomes, representing a significant improvement of contiguity (contig N50 = 12.1 Mb, scaffold N50 = 29.5 Mb) over a previous draft assembly. A total of 40 420 protein-coding genes were predicted in D. longan genome. Synteny analysis suggests longan shares the widespread gamma event with core eudicots, but has no other whole genome duplications. Comparative genomics showed that D. longan genome experienced significant expansions of gene families related to phenylpropanoid biosynthesis and UDP-glucosyltransferase. Deep genome sequencing analysis of longan cultivars identified longan biogeography as a major contributing factor for genetic diversity, and revealed a clear population admixture and introgression among cultivars of different geographic origins, postulating a likely migration trajectory of longan overall confirmed by existing historical records. Finally, genome-wide association studies (GWAS) of longan cultivars identified quantitative trait loci (QTL) for six different fruit quality traits and revealed a shared QTL containing three genes for total soluble solid and seed weight. The chromosome-level reference genome assembly, annotation and population genetic resource for D. longan will facilitate the molecular studies and breeding of desirable longan cultivars in the future.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zaiyuan Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bo Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lili Zhang
- Weifang Institute of Technology, Weifang, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wanqiang Qian
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li Guo
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Free Amino Acids Profile and Expression Analysis of Core Genes Involved in Branched-Chain Amino Acids Metabolism during Fruit Development of Longan ( Dimocarpus longan Lour.) Cultivars with Different Aroma Types. BIOLOGY 2021; 10:biology10080807. [PMID: 34440040 PMCID: PMC8389590 DOI: 10.3390/biology10080807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In this study, three longan cultivars, including non-aroma types ‘Shixia’ (SX), ‘Lidongben’ (LDB), and strong aroma type ‘Xiangcui’ (XC), were selected to analyze free amino acids (FAAs) variations at six distinct growth stages. The genome-wide identification and expression analysis of genes related to the branched-chain amino acids (BCAA) synthesis pathway were carried out. Results showed that thirty-six FAAs were identified, which increased drastically with fruit development until ripening. During the period of rapid fruit expansion, the aroma of XC changed from light to strong, and the contents of L-alanine and L-leucine were significantly higher than those of SX and LDB. The content of Leu was negatively correlated with the expression of DilBCAT1, -6, and -9 in three varieties, but positively correlated with DilBCAT16, indicating that these four genes may be responsible for the different synthesis and degradation of Leu among cultivars. Abstract Amino acids are important component of fruit nutrition and quality. In this study, three longan cultivars, including non-aroma types ‘Shixia’ (SX), ‘Lidongben’ (LDB), and strong aroma type ‘Xiangcui’ (XC), were selected to analyze free amino acids (FAAs) variations at six distinct growth stages (S1–S6). The genome-wide identification and expression analysis of genes related to the branched-chain amino acids (BCAA) synthesis pathway were carried out. Results showed that 36 FAAs were identified, and the total FAAs content ranged from 2601.0 to 9073.5 mg/kg, which increased drastically with fruit development until ripening. L-glutamic acid (Glu), L-alanine (Ala), L-arginine (Arg), γ-Aminobutyric acid (GABA), L-aspartic acid (Asp), L-leucine (Leu), hydroxyl-proline (Hypro), and L-serine (Ser) were the predominant FAAs (1619.9–7213.9 mg/kg) in pulp, accounting for 62.28–92.05% of the total amino acids. During the period of rapid fruit expansion (S2–S4), the aroma of XC changed from light to strong, and the contents of L-alanine (Ala) and L-leucine (Leu) were significantly higher than those of SX and LDB. Furthermore, a total of two 2-isopropyl malate synthase (IPMS), two 3-isopropyl malate dehydrogenase (IPMD), and 16 BCAA transferase (BCAT) genes were identified. The expression levels of DilBCAT1, -6, and -9 genes in XC were significantly higher than those in SX and LDB, while DilBCAT16 in XC was lower. The content of Leu was negatively correlated with the expression of DilBCAT1, -6, and -9 in three varieties, but positively correlated with DilBCAT16, indicating that these four genes may be responsible for the different synthesis and degradation of Leu among cultivars.
Collapse
|
4
|
YELLIANTTY Y, KARTASASMITA RE, SURANTAATMADJA SI, RUKAYADI Y. Identification of chemical constituents from fruit of Antidesma bunius by GC-MS and HPLC-DAD-ESI-MS. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.61320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|