1
|
Kumar Vaidyanathan V, Saikia K, Senthil Kumar P, Karanam Rathankumar A, Rangasamy G, Dattatraya Saratale G. Advances in enzymatic conversion of biomass derived furfural and 5-hydroxymethylfurfural to value-added chemicals and solvents. BIORESOURCE TECHNOLOGY 2023; 378:128975. [PMID: 36990330 DOI: 10.1016/j.biortech.2023.128975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The progress of versatile chemicals and bio-based fuels using renewable biomass has gained ample importance. Furfural and 5-hydroxymethylfurfural are biomass-derived compounds that serve as the cornerstone for high-value chemicals and have a myriad of industrial applications. Despite the significant research into several chemical processes for furanic platform chemicals conversion, the harsh reaction conditions and toxic by-products render their biological conversion an ideal alternative strategy. Although biological conversion confers an array of advantages, these processes have been reviewed less. This review explicates and evaluates notable improvements in the bioconversion of 5-hydroxymethylfurfural and furfural to comprehend the current developments in the biocatalytic transformation of furan. Enzymatic conversion of HMF and furfural to furanic derivative have been explored, while the latter has substantially overlooked a foretime. This discrepancy was reviewed along with the outlook on the potential usage of 5-hydroxymethylfurfural and furfural for the furan-based value-added products' synthesis.
Collapse
Affiliation(s)
- Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kongkona Saikia
- Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Abiram Karanam Rathankumar
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang-si, Gyeonggido, Seoul 10326, South Korea.
| |
Collapse
|
2
|
Jasmine A, Rajendran M, Thirunavukkarasu K, Abinandan S, Vaidyanathan VK, Krishnamurthi T. Microwave-assisted alkali pre-treatment medium for fractionation of rice straw and catalytic conversion to value-added 5-hydroxymethyl furfural and lignin production. Int J Biol Macromol 2023; 236:123999. [PMID: 36906211 DOI: 10.1016/j.ijbiomac.2023.123999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
In the current study, the use of microwave-assisted sodium hydroxide medium (MWSH) for pre-treatment and saccharification of rice straw to obtain sugar syrup for the production of 5-hydroxymethyl furfural (5-HMF) was investigated. The optimization of the MWSH pre-treatment was carried out using central composite methodology, resulting in a maximum reducing sugar yield of 350 mg/g of treated rice straw (TRS) and a glucose yield of 255 mg/g of TRS under the conditions of a microwave power of 681 W, a NaOH concentration of 0.54 M, and a pre-treatment time of 3 min. Additionally, the microwave assisted transformation of sugar syrup with titanium magnetic silica nanoparticle as catalyst, producing 41.1 % yield of 5-HMF from the sugar syrup after 30 min microwave irradiation at 120 °C with catalyst loading of 2.0:200 (w/v)). The structural characterization of the lignin was analysed using 1H NMR techniques, and the surface carbon (C1s spectra) and oxygen (O1s spectra) composition changes of the rice straw during pre-treatment were analysed using X-ray photoelectron spectroscopy. The rice straw based bio-refinery process which contains MWSH pretreatment followed by dehydration of sugars achieved high efficiency of 5-HMF production.
Collapse
Affiliation(s)
- Alice Jasmine
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Muruganantham Rajendran
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Kavin Thirunavukkarasu
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation, University of Newcastle, New South Wales 2308, Australia
| | - Vinoth Kumar Vaidyanathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Tamilarasan Krishnamurthi
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.
| |
Collapse
|
3
|
Saikia K, Radhakrishnan H, Rathankumar AK, Senthil Kumar SG, Kalita S, George J, Subramanian S, Kumar VV. Development of a sustainable route for the production of high-fructose syrup from the polyfructan inulin. IET Nanobiotechnol 2021; 15:149-156. [PMID: 34694703 PMCID: PMC8675771 DOI: 10.1049/nbt2.12031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/21/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
The authors used mesoporous silica microspheres as a support for the immobilization of inulinase from Aspergillus brasiliensis MTCC 1344 by the process of cross-linking. Under optimized operating conditions of pH 6.0, particle/enzyme ratio of 2.0:1.0 and glutaraldehyde concentration of 7 mM, a maximum immobilization yield of 90.7% was obtained after a cross-linking time of 12.25 h. Subsequently, the cross-linked inulinase was utilized for the hydrolysis of 5% inulin, and a maximum fructose concentration of 31.7 g/L was achieved under the optimum conditions of pH 6.0 and temperature 60°C in 3 h. Furthermore, on performing reusability studies during inulin hydrolysis, it was observed that the immobilized inulinase could be reused up to 10 subsequent cycles of hydrolysis, thus providing a facile and commercially attractive process of high-fructose syrup production.
Collapse
Affiliation(s)
- Kongkona Saikia
- School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology, Chennai, India
| | - Hridya Radhakrishnan
- School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology, Chennai, India
| | - Abiram Karanam Rathankumar
- School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology, Chennai, India
| | - Siva Gokul Senthil Kumar
- School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology, Chennai, India
| | - Shravani Kalita
- School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology, Chennai, India
| | - Jenet George
- School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology, Chennai, India
| | - Sivanesan Subramanian
- Department of Applied Science and Technology, AC Tech, Anna University, Chennai, India
| | - Vaidyanathan Vinoth Kumar
- School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
4
|
Saikia K, Rathankumar AK, Vaithyanathan VK, Cabana H, Vaidyanathan VK. Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5-Hydroxymethylfurfural. Int J Biol Macromol 2020; 170:583-592. [PMID: 33385453 DOI: 10.1016/j.ijbiomac.2020.12.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022]
Abstract
The present work pronounces the three phase partitioning (TPP)-facilitated preparation of porous cross-linked Candida antarctica lipase B (CaLB) aggregates (pCLEAs) for 5-Hydroxymethylfurfural (HMF) esters synthesis. CLEAs and pCLEAs of CaLB were prepared with eupergit as the support under the optimized conditions of pH 8.0, eupergit/protein ratio of 3.0:1.0, 50 mM cross-linker concentration and 3.3 mg/mL BSA concentration in 4 h. The optimum starch concentration for pCLEAs was 0.20%, m/v. The maximum biocatalytic load was 650 U/g (CLEAs) and 721 U/g (pCLEAs), and the immobilized biocatalysts were stable over a pH range of 6.0-9.0 and temperature range of (40-60)°C. The BET surface area of CLEAs and pCLEAs were 21.3 and 29.1 m2/g, respectively, and the catalytic efficiency of pCLEAs was 2.2-fold higher than that of CLEAs. Subsequently, the pCLEAs of CaLB were utilized for the manufacturing of industrially significant HMF esters. Under the optimized transesterification conditions, HMF conversion with pCLEAs CaLB was 1.41- and 1.25-fold higher than with free and CLEAs CaLB, respectively. The pCLEAs were reused upto 8 consecutive transesterification cycles and the produced HMF esters reduced the surface tension of water from 72 mN/m to 32.6 mN/m, proving its potential application as surface-active compounds.
Collapse
Affiliation(s)
- Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Tamil Nadu 603 203, India; Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Tamil Nadu 603 203, India; Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Vasanth Kumar Vaithyanathan
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Hubert Cabana
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Tamil Nadu 603 203, India; Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
5
|
Saikia K, Vishnu D, Rathankumar AK, Palanisamy Athiyaman B, Batista-García RA, Folch-Mallol JL, Cabana H, Kumar VV. Development of a magnetically separable co-immobilized laccase and versatile peroxidase system for the conversion of lignocellulosic biomass to vanillin. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:1252-1259. [PMID: 32701040 DOI: 10.1080/10962247.2020.1760958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Lignin obtained from renewable biomass is a potential feedstock for the synthesis of various value-added chemicals through efficient biocatalytic routes. The ligninolytic enzymes-assisted depolymerization of lignin to vanillin constitutes the most commercially attractive and promising approach in green chemistry as vanillin constitutes the second most prevalent flavoring agent. Thus, in the present work, immobilized laccase and versatile peroxidase, and further, a co-immobilized laccase and versatile peroxidase system on magnetic silica microspheres (MSMS) were developed to generate a robust biocatalytic system that mediates the depolymerization of lignin obtained from Casuarina equisetifolia biomass. The depolymerization of lignin by free and immobilized laccase showed a vanillin yield of 24.8% and 23%, respectively, at pH 4.0 in 6 h at 30°C against a vanillin yield of 20% and 21.7% with the free and immobilized versatile peroxidase, respectively, at pH 5.0°C and 50°C. Comparatively, the system with the co-immobilized laccase and versatile peroxidase exhibited a 1-fold and 1.2-fold higher vanillin yield than the free and immobilized laccase system, respectively. On comparing with the versatile peroxidase system, the co-immobilized biocatalytic system displayed 1.3-fold and 1.2-fold increased vanillin yield than the free and immobilized versatile peroxidase system, respectively, at a pH of 6.0 in 6 h at 30°C with an enzyme concentration of 1 U/ml. The reusability studies of the co-immobilized biocatalytic system exhibited that both the enzymes retained up to 40% of its activity till sixth cycle. Implications: The waste biomass of Casuarina equisetifolia is widely available around the coastal regions of India which does not have any agricultural or industrial applications. The present work exploits the lignocellulosic content of the Casuarina biomass to extract the lignin, which provides a renewable alternative for the production of the commercially high-valued compound, vanillin. This work also integrates a co-immobilized biocatalytic process comprising of laccase and versatile peroxidase leading to an environmentally benign enzymatic process for the depolymerization of lignin to vanillin.
Collapse
Affiliation(s)
- Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology , Kattankulathur, India
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université , Sherbrooke, Québec, Canada
| | - Dhanya Vishnu
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology , Kattankulathur, India
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology , Kattankulathur, India
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université , Sherbrooke, Québec, Canada
- Laboratorio Fisiología Molecular Microorganismos Extremófilos, Centro de Investigaciones en Dinámica Celular, Universidad Autónoma del Estado de Morelos , Cuernavaca, México
| | - Balakumaran Palanisamy Athiyaman
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram, India
| | - Ramón Alberto Batista-García
- Laboratorio Fisiología Molecular Microorganismos Extremófilos, Centro de Investigaciones en Dinámica Celular, Universidad Autónoma del Estado de Morelos , Cuernavaca, México
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del estado de Morleos, Cuernavaca, Mexico
| | - Hubert Cabana
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université , Sherbrooke, Québec, Canada
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology , Kattankulathur, India
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université , Sherbrooke, Québec, Canada
- Laboratorio Fisiología Molecular Microorganismos Extremófilos, Centro de Investigaciones en Dinámica Celular, Universidad Autónoma del Estado de Morelos , Cuernavaca, México
- Centro de Investigación en Biotecnología, Universidad Autónoma del estado de Morleos, Cuernavaca, Mexico
| |
Collapse
|
6
|
Saikia K, Senthil Kumar P, Karanam Rathankumar A, SaiLavanyaa S, Srinivasan L, Subramanian S, Cabana H, Gosselin M, Vinoth Kumar V. Amino-functionalised mesoporous silica microspheres for immobilisation of Candida antarctica lipase B - application towards greener production of 2,5-furandicarboxylic acid. IET Nanobiotechnol 2020; 14:732-738. [PMID: 33108331 DOI: 10.1049/iet-nbt.2020.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the present study, amino-functionalised mesoporous silica microspheres were utilised as support for the covalent immobilisation of Candida antarctica lipase B (CaLB) for the subsequent production of 2,5-furandicarboxylic acid (FDCA) from 2,5-diformylfuran (DFF). Under the optimised operating conditions of pH 6.5, particle/enzyme ratio of 1.25:1.0 and glutaraldehyde concentration of 4 mM, a maximum CaLB immobilisation yield of 82.4% on silica microspheres was obtained in 12.25 h. The immobilised CaLB was used for the synthesis of alkyl esters, which were utilised along with hydrogen peroxide for FDCA synthesis. The biocatalytic conversion of 30 mM DFF dictated a 77-79% FDCA in 48 h at 30°C; where the turnover number and turnover frequency of immobilised CaLB were 6220.73 mol mol-1 and 129.59 h-1, respectively, for ethyl acetate, against 6297.65 mol mol-1 and 131.2 h-1, respectively, for ethyl butyrate. Upon examining the operational stability, the immobilised CaLB exhibited high stability till five cycles of FDCA production.
Collapse
Affiliation(s)
- Kongkona Saikia
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
| | | | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
| | - Sundar SaiLavanyaa
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
| | - Lakshmi Srinivasan
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
| | - Sivanesan Subramanian
- Department of Applied Science and Technology, Alagappa College of Technology, Anna University, Chennai 600 025, India
| | - Hubert Cabana
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Mathilde Gosselin
- Materium Innovations INC., Boulevard Industriel 790, Granby, J2G 9J5, Canada
| | - Vaidyanathan Vinoth Kumar
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|