1
|
Shen Q, Lin C, Yao Q, Wang J, Zhou J, He L, Chen G, Hu X. Addition of gadolinium contrast to three-dimensional SSFP MR sequences improves the visibility of coronary artery anatomy in young children. Front Pediatr 2023; 11:1159347. [PMID: 37215588 PMCID: PMC10196256 DOI: 10.3389/fped.2023.1159347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Objective This study aims to compare the value of a gadolinium contrast-enhanced 1.5-T three-dimensional (3D) steady-state free precession (SSFP) sequence with that of a noncontrast 3D SSFP sequence for magnetic resonance coronary angiography in a pediatric population. Materials and methods Seventy-nine patients from 1 month to 18 years old participated in this study. A 3D SSFP coronary MRA at 1.5-T was applied before and after gadolinium-diethylenetriaminepentaaceticacid (DTPA) injection. The detection rates of coronary arteries and side branches were assessed by McNemar's χ2 test. The image quality, vessel length, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of the coronary arteries were analyzed by the Wilcoxon signed-rank test. The intra- and interobserver agreements were evaluated with a weighted kappa test or an intraclass correlation efficient test. Results A contrast-enhanced scan detected more coronary arteries than a noncontrast-enhanced scan in patients under 2 years old (P < 0.05). The SSFP sequence with contrast media detected more coronary artery side branches in patients younger than 5 years (P < 0.05). The image quality of all the coronary arteries was better after the injection of gadolinium-DTPA in children younger than 2 years (P < 0.05) but not significantly improved in children older than 2 years (P > 0.05). The contrast-enhanced 3D SSFP protocol detected longer lengths for the left anterior descending coronary artery in children younger than 2 years and the left circumflex coronary artery (LCX) in children younger than 5 years (P < 0.05). SNR and CNR of all the coronary arteries in children younger than 5 years and the LCX and right coronary artery in children older than 5 years enhanced after the injection of gadolinium-DTPA (P < 0.05). The intra- and interobserver agreements were high (0.803-0.998) for image quality, length, SNR, and CNR of the coronary arteries in both pre- and postcontrast groups. Conclusion The use of gadolinium contrast in combination with the 3D SSFP sequence is necessary for coronary imaging in children under 2 years of age and may be helpful in children between 2 and 5 years. Coronary artery visualization is not significantly improved in children older than 5 years.
Collapse
Affiliation(s)
- Quanli Shen
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Chengxiang Lin
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Qiong Yao
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Junbo Wang
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Lan He
- Heart Centre, Children’s Hospital of Fudan University, Shanghai, China
| | - Gang Chen
- Heart Centre, Children’s Hospital of Fudan University, Shanghai, China
| | - Xihong Hu
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
2
|
Gweon HM, Kim SJ, Lee SM, Hong YJ, Kim TH. 3D whole-heart coronary MR angiography at 1.5T in healthy volunteers: comparison between unenhanced SSFP and Gd-enhanced FLASH sequences. Korean J Radiol 2011; 12:679-85. [PMID: 22043149 PMCID: PMC3194771 DOI: 10.3348/kjr.2011.12.6.679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022] Open
Abstract
Objective To validate the optimal cardiac phase and appropriate acquisition window for three-dimensional (3D) whole-heart coronary magnetic resonance angiography (MRA) with a steady-state free precession (SSFP) sequence, and to compare image quality between SSFP and Gd-enhanced fast low-angle shot (FLASH) MR techniques at 1.5 Tesla (T). Materials and Methods Thirty healthy volunteers (M:F = 25:5; mean age, 35 years; range, 24-54 years) underwent a coronary MRA at 1.5T. 3D whole-heart coronary MRA with an SSFP was performed at three different times: 1) at end-systole with a narrow (120-msec) acquisition window (ESN), 2) mid-diastole with narrow acquisition (MDN); and 3) mid-diastole with wide (170-msec) acquisition (MDW). All volunteers underwent a contrast enhanced coronary MRA after undergoing an unenhanced 3D true fast imaging with steady-state precession (FISP) MRA three times. A contrast enhanced coronary MRA with FLASH was performed during MDN. Visibility of the coronary artery and image quality were evaluated for 11 segments, as suggested by the American Heart Association. Image quality was scored by a five-point scale (1 = not visible to 5 = excellent). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were evaluated at the proximal coronary arteries. Results The SSFP sequence rendered higher visibility coronary segments, higher image quality, as well as higher SNR and CNR than the Gd-enhanced FLASH technique at 1.5T (p < 0.05). The visibility of coronary segments, image quality, SNR and CNR in the ESN, MDN and MDW with SSFP sequence did not differ significantly. Conclusion An SSFP sequence provides an excellent method for the 3D whole-heart coronary MRA at 1.5T. Contrast enhanced coronary MRA using the FLASH sequence does not help improve the visibility of coronary segments, image quality, SNR or CNR on the 3D whole-heart coronary MRA.
Collapse
Affiliation(s)
- Hye Mi Gweon
- Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720, Korea
| | | | | | | | | |
Collapse
|
3
|
Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, Razavi R, Botnar RM, Greil GF. Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology 2011; 259:240-7. [PMID: 21325034 DOI: 10.1148/radiol.10100828] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the feasibility and accuracy of magnetic resonance (MR) coronary angiography for the detection of coronary artery anomalies in infants and children by using surgical findings as a reference. MATERIALS AND METHODS The data analysis was approved by the institutional review board. One hundred children with congenital heart disease underwent MR coronary angiography while under general anesthesia (mean age ± standard deviation, 3.9 years ± 3; age range, 0.2-11 years). A navigator-gated, T2-prepared, three-dimensional steady-state free precession whole-heart protocol (isotropic voxel size, 1.0-1.3 mm(3); mean imaging time, 4.6 minutes ± 1.2; mean navigator efficiency, 70%; 3-mm gating window) was used after injection of gadopentetate dimeglumine. The cardiac rest period (end systole or middiastole) and acquisition window were prospectively assessed for each patient. Coronary artery image quality (score of 0 [nondiagnostic] to 4 [excellent]), vessel sharpness, and coronary artery anomalies were assessed by two observers. Surgery was performed in 58 patients, and those findings were used to define accuracy. Variables were assessed between age groups by using either analysis of variance or Kruskal-Wallis tests. RESULTS Diagnostic image quality (score, ≥1 for all coronary artery segments) was obtained in 46 of the 58 patients (79%) who underwent surgery. The origin and course of the coronary artery anatomy depicted with MR imaging was confirmed at surgery in all 46 patients-including the four (9%) with substantial coronary artery anomalies. Diagnostic-quality images were obtained in 84 of the 100 patients. The rate of success improved significantly when patients were older than 4 months (88% for patients >4 months vs 17% for patients ≤4 months, P < .001). CONCLUSION Improved whole-heart MR coronary angiography enables accurate detection of abnormal origin and course of the coronary artery system even in very young patients with congenital heart disease.
Collapse
Affiliation(s)
- Tarinee Tangcharoen
- Division of Imaging Sciences, Guy's and St Thomas' Hospital, The Rayne Institute, King's College London, 4th Floor, Lambeth Wing, London SE1 7EH, England
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Prompona M, Cyran C, Nikolaou K, Bauner K, Reiser M, Huber A. Contrast-enhanced whole-heart coronary MRA using Gadofosveset 3.0 T versus 1.5 T. Acad Radiol 2010; 17:862-70. [PMID: 20399687 DOI: 10.1016/j.acra.2010.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES To compare contrast-enhanced coronary magnetic resonance angiography (MRA) at 3.0 T with the same technique performed at 1.5 T using the contrast agent gadofosveset. MATERIALS AND METHODS In this prospective randomized study, 19 healthy male volunteers (mean age 28 years, mean weight 79.8 kg), after signing informed consents, underwent contrast-enhanced inversion recovery three-dimensional fast low angle shot (FLASH) MRA at 1.5 and at 3.0 T. Prospective electrocardiogram-triggering was combined with adaptive respiratory gating. For contrast-enhanced images, the intravascular contrast agent gadofosveset was used. Acquisition time, signal-to-noise ratio (SNR) of coronary blood, contrast-to-noise ratio (CNR) between coronaries and adjacent myocardium or epicardial fat and image quality were analyzed for statistical differences by using a two-tailed paired-sample t-test. The ratio calculations were based on measurements performed on the raw data and the image quality was blinded and independently evaluated by two experienced radiologists using a five-point scale. RESULTS The mean values for the acquisition time were 14.58 +/- 0.1 minutes at 1.5 T and 16.40 +/- 0.2 minutes at 3.0 T. Overall SNR of all evaluated coronary segments proved higher at 3.0 T compared to 1.5 T (74.0 +/- 42.1 at 3.0 T vs. 50.2 +/- 20.2 at 1.5 T, P = .04). Overall CNR between coronaries and myocardium was significantly increased at 3.0 T in comparison to 1.5 T (40.1 +/- 21.9 at 3.0 T vs. 24.4 +/- 17.2 at 1.5 T, P = .01). Between the two methods, no significant difference in overall CNR between coronaries and epicardial fat was observed (P = .08, NS). The 3.0 T MRA demonstrated superior overall image quality with respect to 1.5 T (2.28 +/- 0.71 at 3.0 T vs. 1.92 +/- 0.38 at 1.5T, P = .004). CONCLUSION The use of higher field strength, 3.0 T instead of 1.5 T, resulted in similar CNR between coronaries and epicardial fat, higher SNR values and CNR between blood and myocardium, as well as an improved overall image quality, when gadofosveset in combination with electrocardiogram and respiratory triggering for coronary MRA was used.
Collapse
|
5
|
Enden T, Storås TH, Negård A, Haig Y, Sandvik L, Gjesdal KI, Sandset PM, Kløw NE. Visualization of deep veins and detection of deep vein thrombosis (DVT) with balanced turbo field echo (b-TFE) and contrast-enhanced T1 fast field echo (CE-FFE) using a blood pool agent (BPA). J Magn Reson Imaging 2010; 31:416-24. [DOI: 10.1002/jmri.22046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Turkbey EB, Dombroski DA. Cardiac Magnetic Resonance Imaging: Techniques and Clinical Applications. Semin Roentgenol 2009; 44:67-83. [PMID: 19233083 DOI: 10.1053/j.ro.2008.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Gjesdal KI, Storaas T, Geitung JT. A noncontrast-enhanced pulse sequence optimized to visualize human peripheral vessels. Eur Radiol 2008; 19:110-20. [PMID: 18704438 DOI: 10.1007/s00330-008-1113-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 06/13/2008] [Accepted: 06/22/2008] [Indexed: 11/25/2022]
|
8
|
Abstract
Continued advances in radiofrequency hardware and tailored software have, in recent times, greatly increased the power and performance of magnetic resonance imaging for noninvasive evaluation of cardiovascular diseases. Magnetic resonance imaging can uniquely be manipulated to trade temporal resolution and spatial resolution against each other, depending on whether detailed structural or functional information is required. However, to date, a number of cardiovascular magnetic resonance applications have been somewhat limited due to signal-to-noise ratio constraints, reflecting the narrow imaging window imposed by physiological cardiac motion. By increasing the operating field strength from 1.5 to 3 T, it is possible (in principle) to double the signal-to-noise ratio, which in turn may be "traded" for improvements in spatial resolution, coverage, or imaging speed. In this context, the development of parallel imaging has set the stage for impressive performance improvements in contrast-enhanced magnetic resonance angiography at 3 T. Indeed, one could argue that without parallel acquisition, the bang for the buck in going from 1.5 to 3 T would be limited. In this paper, we discuss the current status of 3-T magnetic resonance imaging for cardiovascular imaging, considering the relative gains and limitations relative to 1.5 T.
Collapse
|
9
|
Assessment of thoracic aortic dimensions in an experimental setting: comparison of different unenhanced magnetic resonance angiography techniques with electrocardiogram-gated computed tomography angiography for possible application in the pediatric population. Invest Radiol 2008; 43:179-86. [PMID: 18301314 DOI: 10.1097/rli.0b013e31815f8870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare different unenhanced magnetic resonance angiography (MRA) techniques for quantitative evaluation of vessel lumen in an experimental setting in young pigs whose dimensions allow for a comparison with a pediatric population. MATERIAL AND METHODS Magnetic resonance imaging was performed in 5 healthy ventilated pigs at 1.5 T. Three different electrocardiogram (ECG)-triggered sequences were applied for MRA: [TSE-Db] T2-weighted dark-blood TurboSpinEcho (2.0 x 1.1 x 4 mm3); [trueFISP] 2D-steady-state-free-precession (2.2 x 1.8 x 2 mm3); [NAV] respiratory-gated, T2-prepared 3D-trueFISP (1.3 x 1.3 x 1.3 mm3). ECG-gated-CT angiography (CTA) (16-row CT, 1 mm collimation) served as the standard of reference. The vessel lumen was measured at 7 positions perpendicularly angulated to the vessel wall on multiplanar reformations: ascending aorta (P1), the aortic arch before (P2) and after (P3) the origin of the first supraaortic branch, the aortic arch after the origin of the second supraaortic branch (P4), the descending aorta at the level of the diaphragm (P5), and the first and second supraaortic branches (P6, P7). RESULTS Percentage differences in the vessel area determined by MRA reformation compared with CTA-reformation were 10% +/- 20% and 35% +/- 27% (TSE-Db), -4% +/- 13% and 20% +/- 24% (trueFISP), and -3% +/- 13% and -10% +/- 19% (NAV), for positions P1 to P5 and P6 to P7, respectively. A significant difference from CTA was found for TSE-Db at all positions, and for trueFISP only at positions P6 and P7. CONCLUSIONS Unenhanced MRA techniques allow for a reliable assessment of the dimensions of the thoracic aorta compared with CTA as the standard of reference. Using ECG-gating and navigator techniques, the free-breathing approach showed the best agreement with CTA. This technique may therefore be the most useful in the pediatric age group allowing for true 3D data acquisition with its inherent postprocessing possibilities.
Collapse
|
10
|
Stehning C, Boernert P, Nehrke K. Advances in Coronary MRA from Vessel Wall to Whole Heart Imaging. Magn Reson Med Sci 2007; 6:157-70. [PMID: 18037796 DOI: 10.2463/mrms.6.157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
11
|
Zaheer A, Raptopoulos V. Establishing a cardiac imaging rotation in radiology residency. Acad Radiol 2006; 13:871-3. [PMID: 16777561 DOI: 10.1016/j.acra.2006.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 01/09/2006] [Accepted: 02/09/2006] [Indexed: 11/30/2022]
Abstract
RATIONALE AND OBJECTIVE The advent of new technologies for cardiac imaging such as magnetic resonance imaging (MRI) and cardiac computed tomography (CT) have added new tools in the armamentarium of noninvasive methods for predicting cardiac disease. However, training in cardiac anatomy and physiology is critical if radiology is to meet the demands of this service. MATERIALS AND METHODS We designed a core rotation in cardiac imaging at the Beth Israel Deaconess Medical Center, Harvard Medical School, to train residents in noninvasive cardiac imaging methods, such as cardiac echocardiography, nuclear cardiac imaging, cardiac MRI, and with special emphasis on cardiac CT. RESULTS This 1-month block includes cardiac imaging conferences and a lecture series, hands-on training in the use of imaging software, introduction to cardiac catheterization, and clinical cardiology. Residents are provided with a set of research and review articles along with textbooks on coronary imaging to serve as references for this rotation. CONCLUSION We believe that this educational exercise will establish a core of young, knowledgeable, and capable physicians who will be able to meet the clinical demand for noninvasive cardiac imaging and maintain a major role in this emerging specialty.
Collapse
Affiliation(s)
- Atif Zaheer
- Department of Radiology, Beth Israel Deaconess Medical Center, 350 Brookline Avenue, Boston, MA 02215, USA.
| | | |
Collapse
|