1
|
Wang Y, Yao F, Chen S, Ouyang X, Lan J, Wu Z, Wang Y, Chen J, Wang X, Chen C. Optimal Teicoplanin Dosage Regimens in Critically Ill Patients: Population Pharmacokinetics and Dosing Simulations Based on Renal Function and Infection Type. Drug Des Devel Ther 2023; 17:2259-2271. [PMID: 37546521 PMCID: PMC10404122 DOI: 10.2147/dddt.s413662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose To develop a population pharmacokinetic model describing teicoplanin concentrations in patients hospitalized in intensive care unit (ICU) and to perform Monte Carlo simulations to provide detailed dosing regimens of teicoplanin. Methods This single-center, prospective, observational study was conducted on 151 patients in ICU with 347 plasma samples. The population pharmacokinetics model was established and various covariates were evaluated. The probability of target attainment (PTA) of various proposal dosing regimens was calculated by Monte Carlo simulations. Results The two-compartment model adequately described teicoplanin concentration-time data. The estimated glomerular filtration rate (eGFR) associated with systemic clearance (CL) was the only covariate included in the final model. The estimate of CL was 0.838 L/h, with the eGFR adjustment factor of 0.00823. The volume of the central compartment (Vc), inter-compartmental clearance (Q) and volumes of the peripheral compartments (Vp) were 14.4 L, 3.08 L/h and 51.6 L, respectively. The simulations revealed that the standard dosage regimen was only sufficient for the patients with severe renal dysfunction (eGFR ≤ 30 mL/min/1.73 m2) to attain target trough concentration (Cmin, PTA 52.8%). When eGFR > 30 mL/min/1.73 m2, increasing dose and the administration times of loading doses were the preferred options to achieve target Cmin based on the renal function and types of infection. Conclusion The most commonly used standard dosage regimen was insufficient for all ICU patients. Our study provided detailed dosing regimens of teicoplanin stratified by eGFR and types of infection for ICU patients.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People’s Republic of China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Fen Yao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Shenglong Chen
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Xin Ouyang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Jinhua Lan
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, 510010, People’s Republic of China
| | - Zheng Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Yirong Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Jingchun Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Xipei Wang
- Research Center of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Chunbo Chen
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People’s Republic of China
| |
Collapse
|
2
|
Di Domenico EG, Rimoldi SG, Cavallo I, D’Agosto G, Trento E, Cagnoni G, Palazzin A, Pagani C, Romeri F, De Vecchi E, Schiavini M, Secchi D, Antona C, Rizzardini G, Dichirico RB, Toma L, Kovacs D, Cardinali G, Gallo MT, Gismondo MR, Ensoli F. Microbial biofilm correlates with an increased antibiotic tolerance and poor therapeutic outcome in infective endocarditis. BMC Microbiol 2019; 19:228. [PMID: 31638894 PMCID: PMC6802308 DOI: 10.1186/s12866-019-1596-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infective endocarditis (IE) is associated with high rates of mortality. Prolonged treatments with high-dose intravenous antibiotics often fail to eradicate the infection, frequently leading to high-risk surgical intervention. By providing a mechanism of antibiotic tolerance, which escapes conventional antibiotic susceptibility profiling, microbial biofilm represents a key diagnostic and therapeutic challenge for clinicians. This study aims at assessing a rapid biofilm identification assay and a targeted antimicrobial susceptibility profile of biofilm-growing bacteria in patients with IE, which were unresponsive to antibiotic therapy. RESULTS Staphylococcus aureus was the most common isolate (50%), followed by Enterococcus faecalis (25%) and Streptococcus gallolyticus (25%). All microbial isolates were found to be capable of producing large, structured biofilms in vitro. As expected, antibiotic treatment either administered on the basis of antibiogram or chosen empirically among those considered first-line antibiotics for IE, including ceftriaxone, daptomycin, tigecycline and vancomycin, was not effective at eradicating biofilm-growing bacteria. Conversely, antimicrobial susceptibility profile of biofilm-growing bacteria indicated that teicoplanin, oxacillin and fusidic acid were most effective against S. aureus biofilm, while ampicillin was the most active against S. gallolyticus and E. faecalis biofilm, respectively. CONCLUSIONS This study indicates that biofilm-producing bacteria, from surgically treated IE, display a high tolerance to antibiotics, which is undetected by conventional antibiograms. The rapid identification and antimicrobial tolerance profiling of biofilm-growing bacteria in IE can provide key information for both antimicrobial therapy and prevention strategies.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Sara Giordana Rimoldi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Giovanna D’Agosto
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Giovanni Cagnoni
- UOC Cardiochirurgia, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Alessandro Palazzin
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Cristina Pagani
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Francesca Romeri
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Elena De Vecchi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy
| | - Monica Schiavini
- Dipartimento di Malattie Infettive, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Daniela Secchi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Carlo Antona
- UOC Cardiochirurgia, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Giuliano Rizzardini
- Dipartimento di Malattie Infettive, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Rita Barbara Dichirico
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Daniela Kovacs
- Cutaneous Physiopathology Lab, San Gallicano Dermatologic Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Giorgia Cardinali
- Cutaneous Physiopathology Lab, San Gallicano Dermatologic Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| | - Maria Rita Gismondo
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, Azienda Socio Sanitaria Territoriale Fatebenefratelli-Sacco, Polo Universitario, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Dermatology Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), via Elio Chianesi, 53 00144 Rome, Italy
| |
Collapse
|