1
|
Bulens SN, Campbell D, McKay SL, Vlachos N, Burgin A, Burroughs M, Padila J, Grass JE, Jacob JT, Smith G, Muleta DB, Maloney M, Macierowski B, Wilson LE, Vaeth E, Lynfield R, O'Malley S, Snippes Vagnone PM, Dale J, Janelle SJ, Czaja CA, Johnson H, Phipps EC, Flores KG, Dumyati G, Tsay R, Beldavs ZG, Maureen Cassidy P, Hall A, Walters MS, Guh AY, Magill SS, Lutgring JD. Carbapenem-resistant Acinetobacter baumannii complex in the United States-An epidemiological and molecular description of isolates collected through the Emerging Infections Program, 2019. Am J Infect Control 2024; 52:1035-1042. [PMID: 38692307 DOI: 10.1016/j.ajic.2024.04.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Understanding the epidemiology of carbapenem-resistant A. baumannii complex (CRAB) and the patients impacted is an important step toward informing better infection prevention and control practices and improving public health response. METHODS Active, population-based surveillance was conducted for CRAB in 9 U.S. sites from January 1 to December 31, 2019. Medical records were reviewed, isolates were collected and characterized including antimicrobial susceptibility testing and whole genome sequencing. RESULTS Among 136 incident cases in 2019, 66 isolates were collected and characterized; 56.5% were from cases who were male, 54.5% were from persons of Black or African American race with non-Hispanic ethnicity, and the median age was 63.5 years. Most isolates, 77.2%, were isolated from urine, and 50.0% were collected in the outpatient setting; 72.7% of isolates harbored an acquired carbapenemase gene (aCP), predominantly blaOXA-23 or blaOXA-24/40; however, an isolate with blaNDM was identified. The antimicrobial agent with the most in vitro activity was cefiderocol (96.9% of isolates were susceptible). CONCLUSIONS Our surveillance found that CRAB isolates in the U.S. commonly harbor an aCP, have an antimicrobial susceptibility profile that is defined as difficult-to-treat resistance, and epidemiologically are similar regardless of the presence of an aCP.
Collapse
Affiliation(s)
| | | | | | | | - Alex Burgin
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | | | - Jesse T Jacob
- Georgia Emerging Infections Program, Decatur, GA; Emory University School of Medicine, Atlanta, GA
| | - Gillian Smith
- Georgia Emerging Infections Program, Decatur, GA; Emory University School of Medicine, Atlanta, GA; Atlanta Veterans Affairs Medical Center, Decatur, GA
| | | | | | | | - Lucy E Wilson
- Maryland Department of Health, Baltimore, MD; University of Maryland Baltimore County, Baltimore, MD
| | | | | | | | | | | | - Sarah J Janelle
- Colorado Department of Public Health and Environment, Denver, CO
| | | | - Helen Johnson
- Colorado Department of Public Health and Environment, Denver, CO
| | - Erin C Phipps
- University of New Mexico, Albuquerque, NM; New Mexico Emerging Infections Program, Santa Fe, NM
| | - Kristina G Flores
- University of New Mexico, Albuquerque, NM; New Mexico Emerging Infections Program, Santa Fe, NM
| | | | - Rebecca Tsay
- University of Rochester Medical Center, Rochester, NY
| | | | | | - Amanda Hall
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Alice Y Guh
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | |
Collapse
|
2
|
Malheiros Borges KC, Kipnis A, Junior Neves B, Junqueira-Kipnis AP. Promising New Targets for the Treatment of Infections Caused by Acinetobacter baumannii: A Review. Curr Drug Targets 2024; 25:971-986. [PMID: 39225221 DOI: 10.2174/0113894501319269240819060245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Acinetobacter baumannii is a globally disseminated Gram-negative bacterium that causes several types of serious nosocomial infections, the most worrisome being ventilator-associated pneumonia and bacteremia related to using venous catheters. Due to its great ability to form biofilms, combined with its survival for prolonged periods on abiotic surfaces and its potential to acquire and control the genes that determine antibiotic resistance, A. baumannii is at the top of the World Health Organization's priority list of pathogens in urgent need of new therapies. In this sense, this review aimed to present and discuss new molecular targets present in A. baumannii with potential for promising treatment approaches. This review highlights crucial molecular targets, including cell division proteins, membrane synthesis enzymes, and biofilm-associated components, offering promising targets for novel antimicrobial drug development against A. baumannii infections.
Collapse
Affiliation(s)
- Kellen Christina Malheiros Borges
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Microbiology Laboratory, Department of Biology, Academic Areas, Federal Institute of Goiás, Anápolis, Goiás, Brazil
| | - André Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Junqueira-Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
3
|
Nageeb WM, AlHarbi N, Alrehaili AA, Zakai SA, Elfadadny A, Hetta HF. Global genomic epidemiology of chromosomally mediated non-enzymatic carbapenem resistance in Acinetobacter baumannii: on the way to predict and modify resistance. Front Microbiol 2023; 14:1271733. [PMID: 37869654 PMCID: PMC10587612 DOI: 10.3389/fmicb.2023.1271733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Although carbapenemases are frequently reported in resistant A. baumannii clinical isolates, other chromosomally mediated elements of resistance that are considered essential are frequently underestimated. Having a wide substrate range, multidrug efflux pumps frequently underlie antibiotic treatment failure. Recognizing and exploiting variations in multidrug efflux pumps and penicillin-binding proteins (PBPs) is an essential approach in new antibiotic drug discovery and engineering to meet the growing challenge of multidrug-resistant Gram-negative bacteria. Methods A total of 980 whole genome sequences of A. baumannii were analyzed. Nucleotide sequences for the genes studied were queried against a custom database of FASTA sequences using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) system. The correlation between different variants and carbapenem Minimum Inhibitory Concentrations (MICs) was studied. PROVEAN and I-Mutant predictor suites were used to predict the effect of the studied amino acid substitutions on protein function and protein stability. Both PsiPred and FUpred were used for domain and secondary structure prediction. Phylogenetic reconstruction was performed using SANS serif and then visualized using iTOL and Phandango. Results Exhibiting the highest detection rate, AdeB codes for an important efflux-pump structural protein. T48V, T584I, and P660Q were important variants identified in the AdeB-predicted multidrug efflux transporter pore domains. These can act as probable targets for designing new efflux-pump inhibitors. Each of AdeC Q239L and AdeS D167N can also act as probable targets for restoring carbapenem susceptibility. Membrane proteins appear to have lower predictive potential than efflux pump-related changes. OprB and OprD changes show a greater effect than OmpA, OmpW, Omp33, and CarO changes on carbapenem susceptibility. Functional and statistical evidence make the variants T636A and S382N at PBP1a good markers for imipenem susceptibility and potential important drug targets that can modify imipenem resistance. In addition, PBP3_370, PBP1a_T636A, and PBP1a_S382N may act as potential drug targets that can be exploited to counteract imipenem resistance. Conclusion The study presents a comprehensive epidemiologic and statistical analysis of potential membrane proteins and efflux-pump variants related to carbapenem susceptibility in A. baumannii, shedding light on their clinical utility as diagnostic markers and treatment modification targets for more focused studies of candidate elements.
Collapse
Affiliation(s)
- Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nada AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amani A. Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Moreno-Manjón J, Castillo-Ramírez S, Jolley KA, Maiden MCJ, Gayosso-Vázquez C, Fernández-Vázquez JL, Mateo-Estrada V, Giono-Cerezo S, Alcántar-Curiel MD. Acinetobacter baumannii IC2 and IC5 Isolates with Co-Existing blaOXA-143-like and blaOXA-72 and Exhibiting Strong Biofilm Formation in a Mexican Hospital. Microorganisms 2023; 11:2316. [PMID: 37764160 PMCID: PMC10536109 DOI: 10.3390/microorganisms11092316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen responsible for healthcare-associated infections (HAIs) and outbreaks. Antimicrobial resistance mechanisms and virulence factors allow it to survive and spread in the hospital environment. However, the molecular mechanisms of these traits and their association with international clones are frequently unknown in low- and middle-income countries. Here, we analyze the phenotype and genotype of seventy-six HAIs and outbreak-causing A. baumannii isolates from a Mexican hospital over ten years, with special attention to the carbapenem resistome and biofilm formation. The isolates belonged to the global international clone (IC) 2 and the Latin America endemic IC5 and were predominantly extensively drug-resistant (XDR). Oxacillinases were identified as a common source of carbapenem resistance. We noted the presence of the blaOXA-143-like family (not previously described in Mexico), the blaOXA-72 and the blaOXA-398 found in both ICs. A low prevalence of efflux pump overexpression activity associated with carbapenem resistance was observed. Finally, strong biofilm formation was found, and significant biofilm-related genes were identified, including bfmRS, csuA/BABCDE, pgaABCD and ompA. This study provides a comprehensive profile of the carbapenem resistome of A. baumannii isolates belonging to the same pulse type, along with their significant biofilm formation capacity. Furthermore, it contributes to a better understanding of their role in the recurrence of infection and the endemicity of these isolates in a Mexican hospital.
Collapse
Affiliation(s)
- Julia Moreno-Manjón
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
- Laboratorio de Bacteriología Médica, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico; (S.C.-R.); (V.M.-E.)
| | - Keith A. Jolley
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK; (K.A.J.); (M.C.J.M.)
| | - Martin C. J. Maiden
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK; (K.A.J.); (M.C.J.M.)
| | - Catalina Gayosso-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
| | - José Luis Fernández-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico; (S.C.-R.); (V.M.-E.)
| | - Silvia Giono-Cerezo
- Laboratorio de Bacteriología Médica, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - María Dolores Alcántar-Curiel
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06720, Mexico; (J.M.-M.); (C.G.-V.); (J.L.F.-V.)
| |
Collapse
|
5
|
Ayipo YO, Chong CF, Mordi MN. Small-molecule inhibitors of bacterial-producing metallo-β-lactamases: insights into their resistance mechanisms and biochemical analyses of their activities. RSC Med Chem 2023; 14:1012-1048. [PMID: 37360393 PMCID: PMC10285742 DOI: 10.1039/d3md00036b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/31/2023] [Indexed: 09/20/2023] Open
Abstract
Antibiotic resistance (AR) remains one of the major threats to the global healthcare system, which is associated with alarming morbidity and mortality rates. The defence mechanisms of Enterobacteriaceae to antibiotics occur through several pathways including the production of metallo-β-lactamases (MBLs). The carbapenemases, notably, New Delhi MBL (NDM), imipenemase (IMP), and Verona integron-encoded MBL (VIM), represent the critical MBLs implicated in AR pathogenesis and are responsible for the worst AR-related clinical conditions, but there are no approved inhibitors to date, which needs to be urgently addressed. Presently, the available antibiotics including the most active β-lactam-types are subjected to deactivation and degradation by the notorious superbug-produced enzymes. Progressively, scientists have devoted their efforts to curbing this global menace, and consequently a systematic overview on this topic can aid the timely development of effective therapeutics. In this review, diagnostic strategies for MBL strains and biochemical analyses of potent small-molecule inhibitors from experimental reports (2020-date) are overviewed. Notably, N1 and N2 from natural sources, S3-S7, S9 and S10 and S13-S16 from synthetic routes displayed the most potent broad-spectrum inhibition with ideal safety profiles. Their mechanisms of action include metal sequestration from and multi-dimensional binding to the MBL active pockets. Presently, some β-lactamase (BL)/MBL inhibitors have reached the clinical trial stage. This synopsis represents a model for future translational studies towards the discovery of effective therapeutics to overcome the challenges of AR.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University P. M. B., 1530, Malete Ilorin Nigeria
| | - Chien Fung Chong
- Department of Allied Health Sciences, Universiti Tunku Abdul Rahman 31900 Kampar Perak Malaysia
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia
| |
Collapse
|
6
|
Abou-assy RS, Aly MM, Amasha RH, Jastaniah S, Alammari F, Shamrani M. Carbapenem Resistance Mechanisms, Carbapenemase Genes Dissemination , and Laboratory Detection Methods: A Review. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/wqutf4vfuo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
The prevalence of antibiotic-resistant Acinetobacter baumannii infections among the Iranian ICU patients: A systematic review and meta-analysis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Differential Gene Expression of Efflux Pumps and Porins in Clinical Isolates of MDR Acinetobacter baumannii. Life (Basel) 2022; 12:life12030419. [PMID: 35330171 PMCID: PMC8948634 DOI: 10.3390/life12030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Acinetobacter baumannii is an opportunistic pathogen associated with healthcare infections and high mortality rates in intensive care units all over the globe. Porins and efflux pumps over-expression have been reported as contributing factors in escalating drug resistance and rendering treatment ineffective. In this study, we investigated the mechanisms of multidrug resistance (MDR) in A. baumannii clinical isolates. Methods: A total of 30 A. baumannii isolates were included in the present study from Nehru Hospital (PGIMER-Chandigarh) located in North India. Kirby Bauer disk diffusion assay and MIC were performed to determine the antimicrobial susceptibility pattern. Screening of beta-lactamases was performed using PCR. Relative gene expression of four RND, one MATE efflux pump, and two outer membrane proteins were determined using RT-PCR. Molecular typing of 22 isolates was carried out using MLST Oxford scheme. Results: CarO porin genes showed over-expression in 63% isolates followed by adeGandabeM efflux pump downregulation/underexpression (<0.5 fold), suggesting the carbapenem-susceptible phenotypic nature of the isolates. High prevalence of VIM-2, NDM-1, and OXA-23 genes was observed in A. baumannii isolates. Interestingly, NDM-1 and OXA-58 were traced in 10 and3 A. baumannii isolates respectively; 13 of 22 (59%) isolates showed novel Sequence Types (STs) in the Multi-Locus Sequence Typing (MLST) analysis. ST 1087 was most commonly found ST among all others (16 STs). Conclusions: This study indicated a possible role of carO porin genes and adeG (RND) andabeM (MATE) efflux pumps in carbapenem susceptibility of A. baumannii. New STs were also reported in the majority of the isolates.
Collapse
|
9
|
Oliveira H, Domingues R, Evans B, Sutton JM, Adriaenssens EM, Turner D. Genomic Diversity of Bacteriophages Infecting the Genus Acinetobacter. Viruses 2022; 14:181. [PMID: 35215775 PMCID: PMC8878043 DOI: 10.3390/v14020181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/21/2023] Open
Abstract
The number of sequenced Acinetobacter phage genomes in the International Nucleotide Sequence Database Collaboration has increased significantly in recent years, from 37 in 2017 to a total of 139 as of January 2021 with genome sizes ranging from 31 to 378 kb. Here, we explored the genetic diversity of the Acinetobacter phages using comparative genomics approaches that included assessment of nucleotide similarity, shared gene content, single gene phylogeny, and the network-based classification tool vConTACT2. Phages infecting Acinetobacter sp. are genetically diverse and can be grouped into 8 clusters (subfamilies) and 46 sub-clusters (genera), of which 8 represent genomic singletons (additional genera). We propose the creation of five new subfamilies and suggest a reorganisation of the genus Obolenskvirus. These results provide an updated view of the viruses infecting Acinetobacter species, providing insights into their diversity.
Collapse
Affiliation(s)
- Hugo Oliveira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga, 4710-057 Braga, Portugal; (H.O.); (R.D.)
| | - Rita Domingues
- Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga, 4710-057 Braga, Portugal; (H.O.); (R.D.)
| | - Benjamin Evans
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK;
| | - J. Mark Sutton
- United Kingdom Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 OJG, UK;
| | | | - Dann Turner
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
10
|
Halder SK, Mim MM, Alif MMH, Shathi JF, Alam N, Shil A, Himel MK. Oxa-376 and Oxa-530 variants of β-lactamase: computational study uncovers potential therapeutic targets of Acinetobacter baumannii. RSC Adv 2022; 12:24319-24338. [PMID: 36128545 PMCID: PMC9412156 DOI: 10.1039/d2ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance is a major global health crisis, resulting in thousands of deaths each year. Antibiotics' effectiveness against microorganisms deteriorates over time as multidrug resistance (MDR) develops, which is exacerbated by irregular antibiotic use, poor disease management, and the evasive nature of bacteria. The World Health Organization has recognized multidrug resistance as a critical public health concern, and Acinetobacter baumannii has been at the center of attention due to its ability to develop multidrug resistance (MDR). It generally produces carbapenem-hydrolyzing oxacillinase, which has been identified as the primary source of beta-lactam resistance in MDR bacteria. Recently, point mutations in A. baumannii have been identified as a key factor of multidrug resistance, making them a prime concern for researchers. The goal of the current work was to establish a unique way of finding multidrug-resistant variants and identify the most damaging mutations in the existing databases. We characterized the deleterious variants of oxacillinases using several computational tools. Following a thorough analysis, Oxa-376 and Oxa-530 were found to be more damaging when compared with the wild-type Oxa-51. The mutants' 3D structures were then prepared and refined with RaptorX, GalaxyRefine, and SAVES servers. Our research incorporates seven antimicrobial agents to illustrate the resistance capability of the variants of oxacillinase by evaluating binding affinity in Autodock-vina and Schrodinger software. RMSD, RMSF, Radius of gyration analysis, the solvent-accessible surface area (SASA), hydrogen bonding analysis and MM-GBSA from Molecular Dynamics Simulation revealed the dynamic nature and stability of wild-type and Oxa-376 and Oxa-530 variants. Our findings will benefit researchers looking for the deleterious mutations of Acinetobacter baumannii and new therapeutics to combat those variants. However, further studies are necessary to evaluate the mechanism of hydrolyzing activity and antibiotic resistance of these variants. Determining novel therapeutic targets of Acinetobacter baumannii. Deleterious variants, causing antibiotic resistance, were identified by molecular docking and molecular dynamics simulation suggesting new therapeutic targets Oxa-376 and Oxa-530.![]()
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Research Assistant at Padma Bioresearch, Dhaka, Bangladesh
| | - Maria Mulla Mim
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md. Meharab Hassan Alif
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Jannatul Fardous Shathi
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Nuhu Alam
- Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Aparna Shil
- Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | |
Collapse
|
11
|
Wu H, Feng H, He L, Zhang H, Xu P. In Vitro Activities of Tigecycline in Combination with Amikacin or Colistin Against Carbapenem-Resistant Acinetobacter baumannii. Appl Biochem Biotechnol 2021; 193:3867-3876. [PMID: 34524633 DOI: 10.1007/s12010-021-03664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) has been a common pathogen of nosocomial infections and severely threatened the public health for decades. Tigecycline is a new type of antibacterial glycylcycline and minocycline derivative and has been used to treat CRAB in clinical practice. However, the synergistic effects of tigecycline in combination with other antibiotics including colistin or amikacin remain unclear. A total of 216 CRAB isolates were collected from multiple body parts of different patients. The gene types of these isolates were analyzed and their resistance to carbapenems was determined by Etest. Broth microdilution method was utilized to evaluate the minimum inhibitory concentration (MIC) of each sample. Checkerboard screening technique was performed to demonstrate the synergistic effects of antibiotics and fractional inhibitory concentration index (FICI) was established. Therefore, the joint treatment of tigecycline and colistin (1:1) could effectively improve the sensitivity of AB to antibiotics. OXA-24-like isolates were more sensitive to the combination of tigecycline and amikacin. On the other hand, OXA-23-like isolates were more sensitive to the combination of tigecycline and colistin. Tigecycline exhibited synergistic effects with amikacin and colistin to inhibit CRAB.
Collapse
Affiliation(s)
- Hongbin Wu
- The Clinical Laboratory, Tianjin Fifth Central Hospital, No. 41 Zhejiang Road, Binhai New District, Tianjin, 300450, China.
| | - Heqiang Feng
- The Clinical Laboratory, Tianjin Fifth Central Hospital, No. 41 Zhejiang Road, Binhai New District, Tianjin, 300450, China
| | - Lijie He
- The Clinical Laboratory, Tianjin Fifth Central Hospital, No. 41 Zhejiang Road, Binhai New District, Tianjin, 300450, China
| | - Heping Zhang
- The Clinical Laboratory, Tianjin Fifth Central Hospital, No. 41 Zhejiang Road, Binhai New District, Tianjin, 300450, China
| | - Ping Xu
- The Clinical Pharmacy, Tianjin Fifth Central Hospital, No. 41 Zhejiang Road, Binhai New District, Tianjin, 300450, China
| |
Collapse
|