1
|
Wahhab BH, Oyewusi HA, Wahab RA, Mohammad Hood MH, Abdul Hamid AA, Al-Nimer MS, Edbeib MF, Kaya Y, Huyop F. Comparative modeling and enzymatic affinity of novel haloacid dehalogenase from Bacillus megaterium strain BHS1 isolated from alkaline Blue Lake in Turkey. J Biomol Struct Dyn 2024; 42:1429-1442. [PMID: 37038649 DOI: 10.1080/07391102.2023.2199870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 04/01/2023] [Indexed: 04/12/2023]
Abstract
This study presents the initial structural model of L-haloacid dehalogenase (DehLBHS1) from Bacillus megaterium BHS1, an alkalotolerant bacterium known for its ability to degrade halogenated environmental pollutants. The model provides insights into the structural features of DehLBHS1 and expands our understanding of the enzymatic mechanisms involved in the degradation of these hazardous pollutants. Key amino acid residues (Arg40, Phe59, Asn118, Asn176, and Trp178) in DehLBHS1 were identified to play critical roles in catalysis and molecular recognition of haloalkanoic acid, essential for efficient binding and transformation of haloalkanoic acid molecules. DehLBHS1 was modeled using I-TASSER, yielding a best TM-score of 0.986 and an RMSD of 0.53 Å. Validation of the model using PROCHECK revealed that 89.2% of the residues were located in the most favored region, providing confidence in its structural accuracy. Molecular docking simulations showed that the non-simulated DehLBHS1 preferred 2,2DCP over other substrates, forming one hydrogen bond with Arg40 and exhibiting a minimum energy of -2.5 kJ/mol. The simulated DehLBHS1 exhibited a minimum energy of -4.3 kJ/mol and formed four hydrogen bonds with Arg40, Asn176, Asp9, and Tyr11, further confirming the preference for 2,2DCP. Molecular dynamics simulations supported this preference, based on various metrics, including RMSD, RMSF, gyration, hydrogen bonding, and molecular distance. MM-PBSA calculations showed that the DehLBHS1-2,2-DCP complex had a markedly lower binding energy (-21.363 ± 1.26 kcal/mol) than the DehLBHS1-3CP complex (-14.327 ± 1.738 kcal/mol). This finding has important implications for the substrate specificity and catalytic function of DehLBHS1, particularly in the bioremediation of 2,2-DCP in contaminated alkaline environments. These results provide a detailed view of the molecular interactions between the enzyme and its substrate and may aid in the development of more efficient biocatalytic strategies for the degradation of halogenated compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Batool Hazim Wahhab
- Department of Microbiology, Faculty of Medicine, Al-Mustansiriyah University, Iraq
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Malaysia
| | - Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Malaysia
- Department of Biochemistry, School of Science and Computer Studies, Federal Polytechnic Ado Ekiti, Ekiti State, Nigeria
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Malaysia
| | - Mohammad Hakim Mohammad Hood
- Department of Biotechnology, Kulliyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Marwan Salih Al-Nimer
- Department of Pharmacology, College of Medicine, University of Diyala, Baqubah, Iraq
| | - Mohamed Faraj Edbeib
- Department of Medical Laboratories, Faculty of Medical Technology, Bani Walid University, Libya
| | - Yilmaz Kaya
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Malaysia
| |
Collapse
|
2
|
Wu J, Lv J, Zhao L, Zhao R, Gao T, Xu Q, Liu D, Yu Q, Ma F. Exploring the role of microbial proteins in controlling environmental pollutants based on molecular simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167028. [PMID: 37704131 DOI: 10.1016/j.scitotenv.2023.167028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Molecular simulation has been widely used to study microbial proteins' structural composition and dynamic properties, such as volatility, flexibility, and stability at the microscopic scale. Herein, this review describes the key elements of molecular docking and molecular dynamics (MD) simulations in molecular simulation; reviews the techniques combined with molecular simulation, such as crystallography, spectroscopy, molecular biology, and machine learning, to validate simulation results and bridge information gaps in the structure, microenvironmental changes, expression mechanisms, and intensity quantification; illustrates the application of molecular simulation, in characterizing the molecular mechanisms of interaction of microbial proteins with four different types of contaminants, namely heavy metals (HMs), pesticides, dyes and emerging contaminants (ECs). Finally, the review outlines the important role of molecular simulations in the study of microbial proteins for controlling environmental contamination and provides ideas for the application of molecular simulation in screening microbial proteins and incorporating targeted mutagenesis to obtain more effective contaminant control proteins.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruofan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tian Gao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, China
| | - Qi Xu
- PetroChina Fushun Petrochemical Company, Fushun 113000, China
| | - Dongbo Liu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Qiqi Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
In Silico Analysis on the Interaction of Haloacid Dehalogenase from Bacillus cereus IndB1 with 2-Chloroalkanoic Acid Substrates. ScientificWorldJournal 2022; 2022:1579194. [PMID: 36254337 PMCID: PMC9569217 DOI: 10.1155/2022/1579194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Recently, haloacid dehalogenases have gained a lot of interest because of their potential applications in bioremediation and synthesis of chemical products. The haloacid dehalogenase gene from Bacillus cereus IndB1 (bcfd1) has been isolated, expressed, and Bcfd1 enzyme activity towards monochloroacetic acid has been successfully studied. However, the structure, enantioselectivity, substrate range, and essential residues of Bcfd1 have not been elucidated. This research performed computational studies to predict the Bcfd1 protein structure and analyse the interaction of Bcfd1 towards several haloacid substrates to comprehend their enantioselectivity and substrates' range. Structure prediction revealed that Bcfd1 protein consist of two domains. The main domain consists of seven β-sheets connected by six α-helices and four 310-helices forming a Rossmannoid fold. On the other hand, the cap domain consists of five β-sheets connected by five α-helices. The docking simulation showed that 2-chloroalkanoic acids bind to the active site of Bcfd1 with docking energy decreases as the length of their alkyl chain increases. The docking simulation also indicated that the docking energy differences of two enantiomers of 2-chloroalkanoic acids substrates were not significant. Further analysis revealed the role of Met1, Asp2, Cys33, and Lys204 residues in orienting the carboxylic group of 2-chloroalkanoic acids in the active site of this enzyme through hydrogen bonds. This research proved that computational studies could be used to figure out the effect of substrates enantiomer and length of carbon skeleton to Bcfd1 affinity toward 2-chloroalkanoic acids.
Collapse
|
4
|
Wang Y, Xiang Q, Zhou Q, Xu J, Pei D. Mini Review: Advances in 2-Haloacid Dehalogenases. Front Microbiol 2021; 12:758886. [PMID: 34721367 PMCID: PMC8554231 DOI: 10.3389/fmicb.2021.758886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The 2-haloacid dehalogenases (EC 3.8.1.X) are industrially important enzymes that catalyze the cleavage of carbon-halogen bonds in 2-haloalkanoic acids, releasing halogen ions and producing corresponding 2-hydroxyl acids. These enzymes are of particular interest in environmental remediation and environmentally friendly synthesis of optically pure chiral compounds due to their ability to degrade a wide range of halogenated compounds with astonishing efficiency for enantiomer resolution. The 2-haloacid dehalogenases have been extensively studied with regard to their biochemical characterization, protein crystal structures, and catalytic mechanisms. This paper comprehensively reviews the source of isolation, classification, protein structures, reaction mechanisms, biochemical properties, and application of 2-haloacid dehalogenases; current trends and avenues for further development have also been included.
Collapse
Affiliation(s)
- Yayue Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qiao Xiang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- Zhengzhou Tuoyang Industrial Co., Ltd., Zhengzhou, China
| | - Dongli Pei
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
5
|
Wahhab BHA, Samsulrizal NH, Edbeib MF, Wahab RA, Al-Nimer MSM, Hamid AAA, Oyewusi HA, Kaya Y, Notarte KIR, Shariff AHM, Huyop F. Genomic analysis of a functional haloacid-degrading gene of Bacillus megaterium strain BHS1 isolated from Blue Lake (Mavi Gölü, Turkey). ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01625-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Bacillus megaterium strain BHS1, isolated from an alkaline water sample taken from Mavi Gölü (Blue Lake, Turkey), can grow on minimal medium containing 2,2-dichloropropionic acid. We characterized this bacterium at the genomic level.
Methods
The HiSeq platform was used to carry out genome sequencing, de novo assembly, and scaffolding with strain BHS1. Next, genome data were analyzed to demarcate DNA regions containing protein-coding genes and determine the function of certain BHS1 genes. Finally, results from a colorimetric chloride ion–release assay demonstrated that strain BHS1 produces dehalogenase.
Results
De novo assembly of the BHS1 genomic sequence revealed a genome size of ~ 5.37 Mb with an average G+C content of 38%. The predicted nuclear genome harbors 5509 protein-coding genes, 1353 tRNA genes, 67 rRNA genes, and 6 non-coding (mRNA) genes. Genomic mapping of strain BHS1 revealed its amenability to synthesize two families of dehalogenases (Cof-type haloacid dehalogenase IIB family hydrolase and haloacid dehalogenase type II), suggesting that these enzymes can participate in the catabolism of halogenated organic acids. The mapping identified seven Na+/H+ antiporter subunits that are vital for adaptation of the bacterium to an alkaline environment. Apart from a pairwise analysis to the well-established L-2-haloacid dehalogenases, whole-cell analysis strongly suggested that the haloacid dehalogenase type II might act stereospecifically on L-2-chloropropionic acid, D,L-2-chloropropionic acid, and 2,2-dichloropropionic acid. Whole-cell studies confirmed the utilization of these three substrates and the gene’s role in dehalogenation.
Conclusions
To our knowledge, this is the first report of the full genome sequence for strain BHS1, which enabled the characterization of selected genes having specific metabolic activities and their roles in the biodegradation of halogenated compounds.
Collapse
|
6
|
Adamu A, Wahab RA, Aliyu F, Aminu AH, Hamza MM, Huyop F. Haloacid dehalogenases of Rhizobium sp. and related enzymes: Catalytic properties and mechanistic analysis. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Theoretical analyses on enantiospecificity of L-2-haloacid dehalogenase (DehL) from Rhizobium sp. RC1 towards 2-chloropropionic acid. J Mol Graph Model 2019; 92:131-139. [DOI: 10.1016/j.jmgm.2019.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/02/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022]
|
8
|
The mechanistic role of active site residues in non-stereo haloacid dehalogenase E (DehE). J Mol Graph Model 2019; 90:219-225. [PMID: 31103914 DOI: 10.1016/j.jmgm.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/21/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Dehalogenase E (DehE) is a non-stereospecific enzyme produced by the soil bacterium, Rhizobium sp. RC1. Till now, the catalytic mechanism of DehE remains unclear although several literature concerning its structure and function are available. Since DehE is non-stereospecific, the enzyme was hypothesized to follow a 'direct attack mechanism' for the catalytic breakdown of a haloacid. For a molecular insight, the DehE modelled structure was docked in silico with the substrate 2-chloropropionic acid (2CP) in the active site. The ideal position of DehE residues that allowed a direct attack mechanism was then assessed via molecular dynamics (MD) simulation. It was revealed that the essential catalytic water was hydrogen bonded to the 'water-bearer', Asn114, at a relatively constant distance of ∼2.0 Å after 50 ns. The same water molecule was also closely sited to the catalytic Asp189 at an average distance of ∼2.0 Å, signifying the imperative role of the latter to initiate proton abstraction for water activation. This reaction was crucial to promote a direct attack on the α-carbon of 2CP to eject the halide ion. The water molecule was oriented favourably towards the α-carbon of 2CP at an angle of ∼75°, mirrored by the formation of stable enzyme-substrate orientations throughout the simulation. The data therefore substantiated that the degradation of a haloacid by DehE followed a 'direct attack mechanism'. Hence, this study offers valuable information into future advancements in the engineering of haloacid dehalogenases with improved activity and selectivity, as well as functionality in solvents other than water.
Collapse
|
9
|
Adamu A, Wahab RA, Huyop F. l-2-Haloacid dehalogenase (DehL) from Rhizobium sp. RC1. SPRINGERPLUS 2016; 5:695. [PMID: 27347470 PMCID: PMC4899344 DOI: 10.1186/s40064-016-2328-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/11/2016] [Indexed: 11/10/2022]
Abstract
l-2-Haloacid dehalogenase (DehL) from Rhizobium sp. RC1 is a stereospecific enzyme that acts exclusively on l-isomers of 2-chloropropionate and dichloroacetate. The amino acid sequence of this enzyme is substantially different from those of other l-specific dehalogenases produced by other organisms. DehL has not been crystallised, and hence its three-dimensional structure is unavailable. Herein, we review what is known concerning DehL and tentatively identify the amino acid residues important for catalysis based on a comparative structural and sequence analysis with well-characterised l-specific dehalogenases.
Collapse
Affiliation(s)
- Aliyu Adamu
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Baharu, Johor Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Baharu, Johor Malaysia
| | - Fahrul Huyop
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Baharu, Johor Malaysia
| |
Collapse
|
10
|
Sudi IY, Shamsir MS, Jamaluddin H, Wahab RA, Huyop F. Interactions of non-natural halogenated substrates with D-specific dehalogenase (DehD) mutants using in silico studies. BIOTECHNOL BIOTEC EQ 2014; 28:949-957. [PMID: 26019583 PMCID: PMC4433833 DOI: 10.1080/13102818.2014.960663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/17/2014] [Indexed: 10/26/2022] Open
Abstract
The D-2-haloacid dehalogenase of D-specific dehalogenase (DehD) from Rhizobium sp. RC1 catalyses the hydrolytic dehalogenation of D-haloalkanoic acids, inverting the substrate-product configuration and thereby forming the corresponding L-hydroxyalkanoic acids. Our investigations were focused on DehD mutants: R134A and Y135A. We examined the possible interactions between these mutants with haloalkanoic acids and characterized the key catalytic residues in the wild-type dehalogenase, to design dehalogenase enzyme(s) with improved potential for dehalogenation of a wider range of substrates. Three natural substrates of wild-type DehD, specifically, monochloroacetate, monobromoacetate and D,L-2,3-dichloropropionate, and eight other non-natural haloalkanoic acids substrates of DehD, namely, L-2-chloropropionate; L-2-bromopropionate; 2,2-dichloropropionate; dichloroacetate; dibromoacetate; trichloroacetate; tribromoacetate; and 3-chloropropionate, were docked into the active site of the DehD mutants R134A and Y135A, which produced altered catalytic functions. The mutants interacted strongly with substrates that wild-type DehD does not interact with or degrade. The interaction was particularly enhanced with 3-chloropropionate, in addition to monobromoacetate, monochloroacetate and D,L-2,3-dichloropropionate. In summary, DehD variants R134A and Y135A demonstrated increased propensity for binding haloalkanoic acid and were non-stereospecific towards halogenated substrates. The improved characteristics in these mutants suggest that their functionality could be further exploited and harnessed in bioremediations and biotechnological applications.
Collapse
Affiliation(s)
- Ismaila Yada Sudi
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia , Johor Bahru , Johor , Malaysia
| | - Mohd Shahir Shamsir
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia , Johor Bahru , Johor , Malaysia
| | - Haryati Jamaluddin
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia , Johor Bahru , Johor , Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia , Johor Bahru , Johor , Malaysia
| | - Fahrul Huyop
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia , Johor Bahru , Johor , Malaysia
| |
Collapse
|