1
|
Du R, Chen Z, Zhao S, Ge J, Zhao D. Enhanced dextran production by Weissella confusa in co-culture with Candida shehatae and its quorum sensing regulation mechanism. Int J Biol Macromol 2025; 295:139662. [PMID: 39793821 DOI: 10.1016/j.ijbiomac.2025.139662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Lactic acid bacteria (LAB) are well-known for its expertise in synthesizing exopolysaccharides (EPS), which are linked to significant health benefits, such as its prebiotic effects and ability to modulate the immune system. However, the synthesis of EPS is hindered by low yields. The objective of this study was to investigate the impact of co-cultivation on EPS output by Weissella confusa XG-3 when paired with Candida shehatae. The structure and characteristics of the purified EPS were analyzed. Gel permeation chromatography (GPC) revealed a molecular weight of 3.45 × 106 Da. High-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy and fourier transform infrared (FT-IR) spectroscopy showed that the EPS was a linear homopolysaccharide, mainly composed of glucose units, with a proposed structure of dextran featuring α-(1, 6) glycosidic linkages and occasional α-(1,3) branching. Fermentation processes were conducted in both mono-culture and co-culture settings, with tracking of pivotal gene expression. The result showed that the expression of luxS, ackA and wzb was significantly up-regulated in the co-culture system, which was positively correlated with dextransucrase activity and dextran production. C. shehatae promoted the growth of W. confusa XG-3 by consuming organic acids in the culture system through direct contact, initiating quorum sensing (QS), inducing dsr expression, increasing dextransucrase activity, and ultimately promoting dextran synthesis.
Collapse
Affiliation(s)
- Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zehai Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shouqi Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
2
|
Duarte M, Carvalho MJ, de Carvalho NM, Azevedo-Silva J, Mendes A, Ribeiro IP, Fernandes JC, Oliveira ALS, Oliveira C, Pintado M, Amaro A, Madureira AR. Skincare potential of a sustainable postbiotic extract produced through sugarcane straw fermentation by Saccharomyces cerevisiae. Biofactors 2023; 49:1038-1060. [PMID: 37317790 DOI: 10.1002/biof.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
Postbiotics are defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." They can be produced by fermentation, using culture media with glucose (carbon source), and lactic acid bacteria of the genus Lactobacillus, and/or yeast, mainly Saccharomyces cerevisiae as fermentative microorganisms. Postbiotics comprise different metabolites, and have important biological properties (antioxidant, anti-inflammatory, etc.), thus their cosmetic application should be considered. During this work, the postbiotics production was carried out by fermentation with sugarcane straw, as a source of carbon and phenolic compounds, and as a sustainable process to obtain bioactive extracts. For the production of postbiotics, a saccharification process was carried out with cellulase at 55°C for 24 h. Fermentation was performed sequentially after saccharification at 30°C, for 72 h, using S. cerevisiae. The cells-free extract was characterized regarding its composition, antioxidant activity, and skincare potential. Its use was safe at concentrations below ~20 mg mL-1 (extract's dry weight in deionized water) for keratinocytes and ~ 7.5 mg mL-1 for fibroblasts. It showed antioxidant activity, with ABTS IC50 of 1.88 mg mL-1 , and inhibited elastase and tyrosinase activities by 83.4% and 42.4%, respectively, at the maximum concentration tested (20 mg mL-1 ). In addition, it promoted the production of cytokeratin 14, and demonstrated anti-inflammatory activity at a concentration of 10 mg mL-1 . In the skin microbiota of human volunteers, the extract inhibited Cutibacterium acnes and the Malassezia genus. Shortly, postbiotics were successfully produced using sugarcane straw, and showed bioactive properties that potentiate their use in cosmetic/skincare products.
Collapse
Affiliation(s)
- Marco Duarte
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Maria João Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Nelson Mota de Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - João Azevedo-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Adélia Mendes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Inês Pinto Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Porto, Portugal
| | - João Carlos Fernandes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana L S Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Carla Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Amaro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Raquel Madureira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
3
|
Mutyala S, Kim JR. Recent advances and challenges in the bioconversion of acetate to value-added chemicals. BIORESOURCE TECHNOLOGY 2022; 364:128064. [PMID: 36195215 DOI: 10.1016/j.biortech.2022.128064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Acetate is a major byproduct of the bioconversion of the greenhouse gas carbon dioxide, pretreatment of lignocellulose biomass, and microbial fermentation. The utilization and valorization of acetate have been emphasized in transforming waste to clean energy and value-added platform chemicals, contributing to the development of a closed carbon loop toward a low-carbon circular bio-economy. Acetate has been used to produce several platform chemicals, including succinate, 3-hydroxypropionate, and itaconic acid, highlighting the potential of acetate to synthesize many biochemicals and biofuels. On the other hand, the yields and titers have not reached the theoretical maximum. Recently, recombinant strain development and pathway regulation have been suggested to overcome this limitation. This review provides insights into the important constraints limiting the yields and titers of the biochemical and metabolic pathways of bacteria capable of metabolizing acetate for acetate bioconversion. The current developments in recombinant strain engineering are also discussed.
Collapse
Affiliation(s)
- Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Álvarez A, Gutiérrez A, Ramírez C, Cuenca F, Bolívar G. Aroma compounds produced by liquid fermentation with Saccharomyces cerevisiae and Zygosaccharomyces rouxii from castor oil through cell permeabilization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Bioethanol Production from Sugarcane Press-Mud: Assessment of the Fermentation Conditions to Reduce Fusel Alcohol. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Within a biorefinery context, bioethanol is a promising platform molecule since it can be used as raw material to produce a wide spectrum of valuable industrial products such as H2 and light olefins. However, the presence of impurities limits the conversion of bioethanol in these products. Herein, we aimed to determine the proper pretreatment and fermentation conditions to yield bioethanol with a low content of impurities, such as 3-methyl-1-butanol, by using sugarcane press-mud as feedstock. To do so, a Box-Behnken methodology was employed to select proper pretreatment and fermentation conditions. Factors assessed were temperature, stirring, and pH during fermentation of hydrolysates coming from two different pretreatment methods named as hydrothermal and acid hydrolysis. Results showed that the fermentation temperature should be kept between 26–30 °C to assure at least 91 g/L ethanol. The fusel alcohol content would be reduced by 22% at 30 °C, pH = 4.5, and 200 rpm if sugarcane press-mud is pretreated under acid hydrolysis conditions (T = 130 °C, t = 1 h, 16 g HNO3/kg solid). Further studies should aim to integrate these conditions within a biorefinery concept to yield valuable products such as H2 and ethylene.
Collapse
|
6
|
Influence of Microencapsulation on Fermentative Behavior of Hanseniaspora osmophila in Wine Mixed Starter Fermentation. FERMENTATION 2021. [DOI: 10.3390/fermentation7030112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, as a consequence of the re-evaluation of the role of non-Saccharomyces yeasts, several studies have been conducted on the use of controlled mixed fermentations with Saccharomyces and different non-Saccharomyces yeast species from the winemaking environment. To benefit from the metabolic particularities of some non-Saccharomyces yeasts, the management of a non-Saccharomyces strain in mixed fermentation is a crucial step, in particular the use of procedures addressed to increase the persistence of non-Saccharomyces strains during the fermentative process. The use of microencapsulation for cell immobilization might represent a strategy for enhancing the competitiveness of non-Saccharomyces yeasts during mixed fermentation. This study was aimed to assess the fermentative performance of a mixed starter culture, composed by a wild Hanseniaspora osmophila strain (ND1) and a commercial Saccharomyces cerevisiae strain (EC1118). For this purpose, free and microencapsulated cells of ND1 strain were tested in co-culture with EC1118 during mixed fermentations in order to evaluate the effect of the microencapsulation on fermentative behavior of mixed starter and final wine composition. The data have shown that H. osmophila cell formulation affects the persistence of both ND1 and EC1118 strains during fermentations and microencapsulation resulted in a suitable system to increase the fermentative efficiency of ND1 strain during mixed starter fermentation.
Collapse
|
7
|
Pre-fermentation of malt whisky wort using Lactobacillus plantarum and its influence on new-make spirit character. Food Chem 2020; 320:126605. [PMID: 32229395 DOI: 10.1016/j.foodchem.2020.126605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022]
Abstract
Distillery fermentations are non-sterile, which allow bacterial communities to flourish, typically towards the end of fermentation. The effect of beginning the bacterial fermentation at the start of fermentation was investigated. Wort was treated for 48 h using a commercial strain of Lactobacillus plantarum followed by fermentation using a distilling strain of Saccharomyces cerevisiae. The treated wash showed a substantial increase in lactic, acetic and succinic acids Sensory analysis determined that the spirit produced with bacterial treatment were significantly different (p < 0.05) and chemical analysis demonstrated an increase in the production of ethyl acetate. These results show that pre-treatment using species of Lactobacillus could be utilised to alter the quality of new-make spirit in a distillery. By using bacterial cultures present in the surroundings or raw materials, distillers could allow naturally occurring or commercially available microflora to be added thus enhancing flavour development during fermentation and producing different spirit characters.
Collapse
|
8
|
David A, Tripathi AK, Sani RK. Acetate Production from Cafeteria Wastes and Corn Stover Using a Thermophilic Anaerobic Consortium: A Prelude Study for the Use of Acetate for the Production of Value-Added Products. Microorganisms 2020; 8:E353. [PMID: 32131386 PMCID: PMC7143096 DOI: 10.3390/microorganisms8030353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
Efficient and sustainable biochemical production using low-cost waste assumes considerable industrial and ecological importance. Solid organic wastes (SOWs) are inexpensive, abundantly available resources and their bioconversion to volatile fatty acids, especially acetate, aids in relieving the requirements of pure sugars for microbial biochemical productions in industries. Acetate production from SOW that utilizes the organic carbon of these wastes is used as an efficient solid waste reduction strategy if the environmental factors are optimized. This study screens and optimizes influential factors (physical and chemical) for acetate production by a thermophilic acetogenic consortium using two SOWs-cafeteria wastes and corn stover. The screening experiment revealed significant effects of temperature, bromoethane sulfonate, and shaking on acetate production. Temperature, medium pH, and C:N ratio were further optimized using statistical optimization with response surface methodology. The maximum acetate concentration of 8061 mg L-1 (>200% improvement) was achieved at temperature, pH, and C:N ratio of 60 °C, 6, 25, respectively, and acetate accounted for more than 85% of metabolites. This study also demonstrated the feasibility of using acetate-rich fermentate (obtained from SOWs) as a substrate for the growth of industrially relevant yeast Yarrowia lipolytica, which can convert acetate into higher-value biochemicals.
Collapse
Affiliation(s)
- Aditi David
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.D.); (A.K.T.)
| | - Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.D.); (A.K.T.)
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.D.); (A.K.T.)
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| |
Collapse
|
9
|
Enhanced Exopolysaccharide Production by Lactobacillus rhamnosus in Co-Culture with Saccharomyces cerevisiae. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lactobacillus strains are known to produce exopolysaccharides (EPS) with recognized health benefits (i.e. prebiotic and immunomodulation) but production is limited by low yields. Co-culture has been shown to improve metabolite productivity, particularly bacteriocins and EPS. Although lactic acid bacteria (LAB) and yeasts are found in several fermented products, the molecular mechanisms linked to the microbial interactions and their influences on EPS biosynthesis are unclear. The aim of the present study was to investigate the effect of co-culture on EPS production by three Lactobacillus rhamnosus strains (ATCC 9595, R0011, and RW-9595M) in association with Saccharomyces cerevisiae. Fermentation, in both mono and co-culture, was carried out and the expression of key LAB genes was monitored. After 48 h, results revealed that EPS production was enhanced by 39%, 49%, and 42% in co-culture for R0011, ATCC 9595, and RW-9595M, respectively. Each strain showed distinctive gene expression profiles. For a higher EPS production, higher EPS operon expression levels were observed for RW-9595M in co-culture. The construction of gene co-expression networks revealed common correlations between the expression of genes related to the EPS operons, sugar metabolism, and stress during EPS production and microbial growth for the three strains. Our findings provide insight into the positive influence of inter-kingdom interactions in stimulating EPS biosynthesis, representing progress toward the development of a bio-ingredient with broad industrial applications.
Collapse
|
10
|
Effect of Co-Inoculation with Saccharomyces cerevisiae and Lactic Acid Bacteria on the Content of Propan-2-ol, Acetaldehyde and Weak Acids in Fermented Distillery Mashes. Int J Mol Sci 2019; 20:ijms20071659. [PMID: 30987119 PMCID: PMC6479555 DOI: 10.3390/ijms20071659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
The qualitative and quantitative composition of volatile compounds in fermented distillery mash determines the quality of the obtained distillate of agricultural origin (i.e., raw spirit) and the effectiveness of further purification steps. Propan-2-ol (syn. isopropyl alcohol), due to its low boiling point, is difficult to remove by rectification. Therefore, its synthesis needs to be limited during fermentation by Saccharomyces cerevisiae yeast, while at the same time controlling the levels of acetaldehyde and acetic acid, which are likewise known to determine the quality of raw spirit. Lactic acid bacteria (LAB) are a common but undesirable contaminant in distillery mashes. They are responsible for the production of undesirable compounds, which can affect synthesis of propan-2-ol. Some bacteria strains are able to synthesize isopropyl alcohol. This study therefore set out to investigate whether LAB with S. cerevisiae yeast are responsible for conversion of acetone to propan-2-ol, as well as the effects of the amount of LAB inoculum and fermentation parameters (pH and temperature) on the content of isopropyl alcohol, acetaldehyde, lactic acid and acetic acid in fermented mashes. The results of NMR and comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC × GC-TOF MS) analysis confirmed the ability of the yeast and LAB strains to metabolize acetone via its reduction to isopropyl alcohol. Efficient fermentation of distillery mashes was observed in all tested mashes with an initial LAB count of 3.34–6.34 log cfu/mL, which had no significant effect on the ethanol content. However, changes were observed in the contents of by-products. Lowering the initial pH of the mashes to 4.5, without and with LAB (3.34–4.34 log cfu/mL), resulted in a decrease in propan-2-ol and a concomitant increase in acetaldehyde content, while a higher pH (5.0 and 5.5) increased the content of propan-2-ol and decreased acetaldehyde content. Higher temperature (35 °C) promoted propan-2-ol synthesis and also resulted in increased acetic acid content in the fermented mashes compared to the controls. Moreover, the acetic acid content rose with increases in the initial pH and the initial LAB count.
Collapse
|
11
|
He RR, Wang ZC, Tong HF, Chen WX, Chen WJ, Chen HM, Zhong QP. Effects of Metal Ion Addition on Acetic Acid Removal by Saccharomyces cerevisiae during Lychee Wine Fermentation. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAcetic acid (AA) is the main component of the volatile acidity of lychee wine. It can be generated by yeast, contaminated lactic acid, and AA bacteria at any time during lychee wine fermentation. AA has a negative impact on yeast fermentative performance and affects the quality of lychee wine when present above a given concentration. Thus, excessive amounts of AA should be removed to control the quality of lychee wine. This study investigated the effects of supplementing lychee juice with different concentrations of metal (magnesium, potassium, and calcium) ions on AA removal during lychee wine fermentation at 20 °C. All treatments of metal ion addition negatively affected yeast growth. The addition of either magnesium or potassium ions decreased the AA content, and the lowest values were attained with the addition of 4 mM magnesium ions and 6 mM potassium ions. By contrast, the addition of calcium ions increased the AA content. The addition of metal ions significantly affected metabolites, because more succinic acid, more malic acid, more glycerol, and less acetaldehyde were produced with increasing activities of acetaldehyde dehydrogenase, acetyl-CoA synthetase, isocitrate lyase, and malate synthase. Moreover, the addition of metal ions significantly modified the aroma components of deacidified lychee wine. These findings offer insight into the mechanism of yeast utilization of AA and suggest that selectively adding metal ions may be used a tool to modulate the AA content of lychee wine.
Collapse
Affiliation(s)
- Rong-Rong He
- College of Food Science and Technology, Hainan University, Haikou570228, China
| | - Zhen-Chang Wang
- College of Food Science and Technology, Hainan University, Haikou570228, China
| | - Hai-Feng Tong
- College of Food Science and Technology, Hainan University, Haikou570228, China
| | - Wen-Xue Chen
- College of Food Science and Technology, Hainan University, Haikou570228, China
| | - Wei-Jun Chen
- College of Food Science and Technology, Hainan University, Haikou570228, China
| | - Hai-Ming Chen
- College of Food Science and Technology, Hainan University, Haikou570228, China
| | - Qiu-Ping Zhong
- College of Food Science and Technology, Hainan University, Haikou570228, China
| |
Collapse
|