1
|
Betti M, Ciacci C, Abramovich S, Frontalini F. Protein Extractions from Amphistegina lobifera: Protocol Development and Optimization. Life (Basel) 2021; 11:life11050418. [PMID: 34063137 PMCID: PMC8148146 DOI: 10.3390/life11050418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Proteins are essential to life, and the evaluation of their content, identification, and modification represents a fundamental assay in biochemistry research. Different analytical techniques and protocols have been specifically designed but have rarely been compared. Here, we test and compare a variety of methodologies and treatments for the quantification of proteins in Amphistegina lessonii, a larger symbiont-bearing benthic foraminiferal species. These analyses specifically include (a) lysis buffer (homemade vs. RIPA), (b) protein assays (Lowry, BCA, and Bradford), (c) ultrasonic bath treatment, and (d) protein staining (silver staining vs. Coomassie blue). On the basis of the comparative outcome, we suggest using the homemade lysis buffer, Lowry or BCA assays, ultrasonic bath treatment, and silver stain to maximize the extraction and characterization of protein for A. lessonii. This protocol might be suitable and extended to other benthic foraminiferal species, including the smaller ones.
Collapse
Affiliation(s)
- Michele Betti
- Department of Biomolecular Science, Urbino University, 61029 Urbino, Italy; (M.B.); (C.C.)
| | - Caterina Ciacci
- Department of Biomolecular Science, Urbino University, 61029 Urbino, Italy; (M.B.); (C.C.)
| | - Sigal Abramovich
- Department of Earth and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Fabrizio Frontalini
- Department of Pure and Applied Sciences, Urbino University, 61029 Urbino, Italy
- Correspondence:
| |
Collapse
|
2
|
Häfner L, Kalkhof S, Jira W. Authentication of nine poultry species using high-performance liquid chromatography–tandem mass spectrometry. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Min CW, Gupta R, Agrawal GK, Rakwal R, Kim ST. Concepts and strategies of soybean seed proteomics using the shotgun proteomics approach. Expert Rev Proteomics 2019; 16:795-804. [PMID: 31398080 DOI: 10.1080/14789450.2019.1654860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022]
Abstract
Introduction: The last decade has yielded significant developments in the field of proteomics, especially in mass spectrometry (MS) and data analysis tools. In particular, a shift from gel-based to MS-based proteomics has been observed, thereby providing a platform with which to construct proteome atlases for all life forms. Nevertheless, the analysis of plant proteomes, especially those of samples that contain high-abundance proteins (HAPs), such as soybean seeds, remains challenging. Areas covered: Here, we review recent progress in soybean seed proteomics and highlight advances in HAPs depletion methods and peptide pre-fractionation, identification, and quantification methods. We also suggest a pipeline for future proteomic analysis, in order to increase the dynamic coverage of the soybean seed proteome. Expert opinion: Because HAPs limit the dynamic resolution of the soybean seed proteome, the depletion of HAPs is a prerequisite of high-throughput proteome analysis, and owing to the use of two-dimensional gel electrophoresis-based proteomic approaches, few soybean seed proteins have been identified or characterized. Recent advances in proteomic technologies, which have significantly increased the proteome coverage of other plants, could be used to overcome the current complexity and limitation of soybean seed proteomics.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Life and industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265 , Kathmandu , Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited , Birgunj , Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265 , Kathmandu , Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited , Birgunj , Nepal
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba , Ibaraki , Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and industry Convergence Research Institute, Pusan National University , Miryang , Korea
| |
Collapse
|
4
|
Wen C, Zhang J, Yao H, Zhou J, Duan Y, Zhang H, Ma H. Advances in renewable plant-derived protein source: The structure, physicochemical properties affected by ultrasonication. ULTRASONICS SONOCHEMISTRY 2019; 53:83-98. [PMID: 30600214 DOI: 10.1016/j.ultsonch.2018.12.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/05/2018] [Accepted: 12/24/2018] [Indexed: 05/27/2023]
Abstract
In recent years, there has been increasing interest in renewable and sustainable protein resource of plant origin. The reasons for this are summarized as follows: (1) green, low-cost, environmental friendly and sustainable concepts are deeply rooted in people's minds; (2) long-term use of animal protein can lead to high blood pressure, obesity, negative environmental impacts; (3) more and more vegetarians are emerged; (4) many consumers still do not accept food grade insect. Based on this situation, this paper links eco-innovative ultrasound technology to plant-derived sustainable proteins resource, and magnifies the advantages of both at the same time. Ultrasound is a novel, green and rapid developing environmental friendly technology, which is suitable for up scaling and improving the physicochemical properties of protein. This review summarizes the mechanisms, cavitation properties of ultrasonic field, consumption of energy, applications of spectroscopic techniques for evaluating plant-derived proteins conformation changes, effects of ultrasound on the structure and physicochemical properties of plant-derived renewable proteins, and application of ultrasound treatment proteins in food industry. Furthermore, future research to better utilize this green technology is suggested. In this way, it not only conforms to the concept of sustainable, high-efficiency, and environmental protection of the food protein industry, but also clarifies the relationship between protein structure and properties, which are conducive to the application of ultrasound in protein industrialization.
Collapse
Affiliation(s)
- Chaoting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jixian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Yao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Luthria DL, Maria John KM, Marupaka R, Natarajan S. Recent update on methodologies for extraction and analysis of soybean seed proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5572-5580. [PMID: 29971799 DOI: 10.1002/jsfa.9235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Soybean is one of the best sources of plant protein. Development of improved soybean cultivars through classical breeding and new biotech approaches is important to meet the growing global demand for soybeans. There is a critical need to investigate changes in protein content and profiles to ensure the safety and nutritional quality of new soybean varieties and their food products. A proteomics study begins with an optimal combination of extraction, separation and detection approaches. This review attempts to provide a summary of current updates in the methodologies used for extraction, separation and detection of protein from soybean, the basic foundations for good proteomic research. This information can be effectively used to investigate modifications in protein content and profiles in new varieties of soybeans and other crops. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Devanand L Luthria
- Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | | | - Ramesh Marupaka
- Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | | |
Collapse
|
6
|
Liu MM, Qi B, Liu ZX, Zhan JS, Zhan K, Zhao GQ. Optimization of low-abundance protein extraction and abundant protein removal from defatted soybean meal. J Zhejiang Univ Sci B 2017; 18:878-885. [PMID: 28990378 PMCID: PMC5633772 DOI: 10.1631/jzus.b1600293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/28/2016] [Indexed: 11/11/2022]
Abstract
The aim of this study was to optimize the conditions for the extraction of low-abundance proteins (LAPs) and the removal of abundant proteins (APs; β-conglycinin and glycinin) from soybean meal. Single factor and orthogonal experiments were designed to determine the effects of four factors (isopropanol concentration, total extraction time, ultrasonic power, and ultrasonic time) on protein concentration in isopropanol extracts. Proteins in the isopropanol supernatant and the cold acetone precipitate of isopropanol were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). The results showed that the optimal conditions were 50% isopropanol, ultrasonic pretreatment for 15 min at 350 W, and a total extraction time of 1 h. Under these conditions, the protein concentration in the isopropanol extracts reached 0.8081 g/L. Many LAPs were detected, including β-amylase, soybean agglutinin, soybean trypsin inhibitor, fumarylacetoacetase-like, phospholipase D alpha 1-like, oleosin, and even some unknown soybean proteins. The soybean APs (β-conglycinin and glycinin) were not found. The method may be useful for discovering new soybean proteins and extracting enough LAPs of soybean to allow further studies of their physiological effects on animals without the influence of APs.
Collapse
Affiliation(s)
- Ming-mei Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Huai’an Bioengineering Branch of Jiangsu Union Technical Institute, Huai’an 223200, China
| | - Bin Qi
- Key Laboratory of Food and Biotechnology, Changshu Institute of Technology, Suzhou 215500, China
| | - Zheng-xu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jin-shun Zhan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guo-qi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
O’Sullivan JJ, Park M, Beevers J, Greenwood RW, Norton IT. Applications of ultrasound for the functional modification of proteins and nanoemulsion formation: A review. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.12.037] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Gupta R, Min CW, Wang Y, Kim YC, Agrawal GK, Rakwal R, Kim ST. Expect the Unexpected Enrichment of "Hidden Proteome" of Seeds and Tubers by Depletion of Storage Proteins. FRONTIERS IN PLANT SCIENCE 2016; 7:761. [PMID: 27313590 PMCID: PMC4887479 DOI: 10.3389/fpls.2016.00761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 05/03/2023]
Abstract
Dynamic resolution of seed and tuber protein samples is highly limited due to the presence of high-abundance storage proteins (SPs). These proteins inevitably obscure the low-abundance proteins (LAPs) impeding their identification and characterization. To facilitate the detection of LAPs, several methods have been developed during the past decade, enriching the proteome with extreme proteins. Most of these methods, if not all, are based on the specific removal of SPs which ultimately magnify the proteome coverage. In this mini-review, we summarize the available methods that have been developed over the years for the enrichment of LAPs either from seeds or tubers. Incorporation of these methods during the protein extraction step will be helpful in understanding the seed/tuber biology in greater detail.
Collapse
Affiliation(s)
- Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
| | - Cheol W. Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Yong C. Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
| | - Ganesh K. Agrawal
- Research Laboratory for Biotechnology and BiochemistryKathmandu, Nepal
- Global Research Arch for Developing Education, Academy Pvt. Ltd.Birgunj, Nepal
| | - Randeep Rakwal
- Global Research Arch for Developing Education, Academy Pvt. Ltd.Birgunj, Nepal
- Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies, University of TsukubaIbaraki, Japan
| | - Sun T. Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
- *Correspondence: Sun T. Kim,
| |
Collapse
|