1
|
Rodríguez-Martínez B, Coelho E, Gullón B, Yáñez R, Domingues L. Potato peels waste as a sustainable source for biotechnological production of biofuels: Process optimization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:320-328. [PMID: 36413884 DOI: 10.1016/j.wasman.2022.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Potato peel waste (PPW) is a starchy by-product generated in great amounts during the industrial processing of potatoes. It can be used as a low cost alternative, and renewable feedstock for the production of second generation bioethanol. In order to intensify this process, Saccharomyces cerevisiae Ethanol Red®, a robust and thermotolerant yeast strain, was selected and two experimental designs and response surfaces assessment were conducted to enable very high gravity fermentations (VHGF) using PPW as feedstock. The first one focused on the optimization of the liquefaction and enzymatic hydrolysis stages, enabling a maximum ethanol concentration of 116.5 g/L and a yield of 80.4 % at 72 h of fermentation; whereas, the second one, focus on the optimization of the pre-saccharification and fermentation stages, which further increased process productivity, leading to a maximum ethanol concentration of 108.8 g/L and a yield of 75.1 % after 54 h of fermentation. These results allowed the definition of an intensified pre-saccharification and simultaneous saccharification and fermentation (PSSF) process for ethanol production from PPW, resorting to short liquefaction and pre-saccharification times, 2 h and 10 h respectively, at an enzyme loading of 80 U/g PPW of Viscozyme and 5 UE/g PPW of SAN Super and a higher fermentation temperature of 34 °C due to the use of a thermotolerant yeast. Overall, with these conditions and solely from PPW without any supplementation, the outlined PSSF process allowed reaching a high ethanol concentration and yield (104.1 g/L and 71.9 %, respectively) standing at high productivities with only 54 h of fermentation.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Martínez
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, As Lagoas, 32004 Ourense, Spain
| | - Eduardo Coelho
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, As Lagoas, 32004 Ourense, Spain
| | - Remedios Yáñez
- Universidade de Vigo, Departamento de Enxeñaría Química, Escola de Enxeñaría Industrial, Campus Lagoas-Marcosende 9, Vigo 36310, Spain; CINBIO, Universidade de Vigo, 36310 Vigo, Spain.
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Impact of Calcium and Nitrogen Addition on Bioethanol Production by S. cerevisiae Fermentation from Date By-Products: Physicochemical Characterization and Technical Design. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Given crude oil prices and their environmental impacts, the use of sustainable renewable alternative energies such as biofuels is rapidly progressing in numerous countries. Among biofuels, bioethanol is a renewable and clean fuel that can be obtained from the fermentation of several raw agricultural materials, including date fruit. However, the low product yield, mainly due to the low-grade nutrient content, limits its use as a promising alternative biofuel. This current study investigated bioethanol production from date by-products in Saudi Arabia and examined the impact of calcium and nitrogen sources added at different concentrations (0 to 1 g/L) on the productivity and ethanol concentration using Saccharomyces cerevisiae. Yeast extracts and ammonium chloride (NH4Cl) were tested as nitrogen sources for bioethanol fermentation from date juice. Calcium chloride (CaCl2) and calcium carbonate (CaCO3) were evaluated as calcium sources for the same purpose mentioned above. The results showed that both calcium and nitrogen sources improved ethanol production efficiencies. The addition of calcium sources such as CaCl2 at 0.4 g/L resulted in maximum ethanol concentration (41.5 ± 0.85 g/L) and the highest productivity of 0.511 g/L/h. Thus, an increase of 31.3% compared to the control sample was acquired. Ammonium chloride was found to be the best nitrogen supplement among them. Indeed, supplementing the fermentation medium with 1 g/L NH4Cl gave an optimal ethanol concentration and productivity, reaching more than 65 g/L and 0.83 g/L/h, respectively. This is an increase of 106.6%. The functional group of ethanol (C2H5OH) for all the elaborated samples was confirmed by Fourier-transform infrared spectroscopy (FTIR) and NMR analyses. Moreover, the results confirmed the high quality and purity of the bioethanol products. Thus, the “Khodhari” date variety of low market value is a privileged substrate for industrial bioethanol production. For this reason, a proposed flow diagram of a designed plant for bioethanol industrialization is provided and detailed.
Collapse
|
3
|
Ayadi M, Chiab N, Charfeddine S, Abdelhedi R, Dabous A, Talbi O, Mieulet D, Guiderdoni E, Aifa S, Gargouri-Bouzid R, Hanana M. Improved growth and tuber quality of transgenic potato plants overexpressing either NHX antiporter, CLC chloride channel, or both. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:46-58. [PMID: 36044822 DOI: 10.1016/j.plaphy.2022.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The nutritional enhancement of potato plants (Solanum tuberosum L.,) is highly critical. As it is considered a worldwide basic vegetarian nutrition to maintain health. S. tuberosum is one of the foremost staples and the world's fourth-largest food crop. In advance, its need is increasing because of its high-industrial value and population blast. To improve both potato growth and behavior under harsh environmental conditions, we produced transgenic potato plants overexpressing either VvNHX (a sodium proton antiporter from Vitis vinifera), VvCLC (a chloride channel from Vitis vinifera), or both. Control and transgenic plants were grown in greenhouse and field under non-stressed conditions for 85 days in order to characterize their phenotype and evaluate their agronomical performance. To this aim, the evaluation of plant growth parameters, tuber yields and characteristics (calibers, eye number and color), the chemical composition of tubers, was conducted and compared between the different lines. The obtained results showed that transgenic plants displayed an improved growth (flowering precocity, gain of vigor and better vegetative growth) along with enhanced tuber yields and quality (increased protein and starch contents). Our findings provide then insight into the role played by the VvNHX antiport and the VvCLC channel and a greater understanding of the effect of their overexpression in potato plants.
Collapse
Affiliation(s)
- Mariem Ayadi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia; Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia
| | - Nour Chiab
- Plant amelioration and Agri-resource valorization laboratory, National School of Engineers of Sfax (ENIS), Tunisia
| | - Safa Charfeddine
- Plant amelioration and Agri-resource valorization laboratory, National School of Engineers of Sfax (ENIS), Tunisia
| | - Rania Abdelhedi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Amira Dabous
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia
| | - Ons Talbi
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia
| | - Delphine Mieulet
- Cirad, UMR AGAP, Montpellier, France; Université de Montpellier, Cirad-Inra-Montpellier SupAgro, Montpellier, France
| | - Emmanuel Guiderdoni
- Cirad, UMR AGAP, Montpellier, France; Université de Montpellier, Cirad-Inra-Montpellier SupAgro, Montpellier, France
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Plant amelioration and Agri-resource valorization laboratory, National School of Engineers of Sfax (ENIS), Tunisia
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia.
| |
Collapse
|
4
|
Ebrahimian F, Denayer JFM, Karimi K. Potato peel waste biorefinery for the sustainable production of biofuels, bioplastics, and biosorbents. BIORESOURCE TECHNOLOGY 2022; 360:127609. [PMID: 35840021 DOI: 10.1016/j.biortech.2022.127609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Potato is the fourth most abundant crop harvested annually worldwide. Potato peel waste (PPW) is the main waste stream of potato-processing industries which is generated in large quantities and is a threat to the environment globally. However, owing to its compositional characteristics, availability, and zero cost, PPW is a renewable resource for the production of high-value bioproducts. Hence, this study provides a state-of-the-art overview of advancements in PPW valorization through biological and thermochemical conversions. PPW has a high potential for biofuel and biochemical generation through detoxification, pretreatment, hydrolysis, and fermentation. Moreover, many other valuable chemicals, including bio-oil, biochar, and biosorbents, can be produced via thermochemical conversions. However, several challenges are associated with the biological and thermochemical processing of PPW. The insights provided in this review pave the way toward a PPW-based biorefinery development, providing sustainable alternatives to fossil-based products and mitigating environmental concerns.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
5
|
Chauhan M, Dutt S, Manjul AS, Singh B, Garlapati VK. A sustainable approach of turning potato waste towards bioethanol production using indigenous microbes of Himachal Pradesh, India. CHEMOSPHERE 2022; 299:134429. [PMID: 35346739 DOI: 10.1016/j.chemosphere.2022.134429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Potato peel waste is one of the zero-value wastes with the potential of bioethanol production through the Waste to Energy (WtE) approach. The newly isolated, phenotypically characterized, and molecular identified high-altitude strain, B. amyloliquefaciens, shown promising starch hydrolysis (12.06 g/L reducing sugars) over acid hydrolysis and is capable of working at 30-50 °C and pH 6.0-8.0. The ethanol production by Acinetobacter sp. (a newly isolated, phenotypically characterized, molecular identified) has been modelled and optimized through the central composite design of response surface methodology by taking the fermentation variables as input variables and ethanol yield as the output variable. The ethanol production by Acinetobacter sp. showcased a non-linear relationship of fermentation variables with the ethanol yield (5.83 g/L) with a 99.11% desirability function (R2) and 97.50 adj. R2 values. Optimal fermentation variables of 38.8% substrate concentration, 7% inoculum, pH 5.45 have been utilized for bioethanol production in 55.27 h at 27 °C. Overall, the present study evaluated the efficiency of newly isolated, indigenous extremophilic microbes of The Himalayan region in sustainable bioethanol production from zero-value waste "Potato peel waste" through the WtE approach. Moreover, the present study introduces the promising, unexplored extremophilic microbial strains with the starch-hydrolyzing and fermentation capabilities to bioethanol biorefinery.
Collapse
Affiliation(s)
- Mamta Chauhan
- Crop Physiology, Biochemistry and Post Harvest Technology. Division, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Som Dutt
- Crop Physiology, Biochemistry and Post Harvest Technology. Division, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Anshul Sharma Manjul
- Crop Physiology, Biochemistry and Post Harvest Technology. Division, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- Crop Physiology, Biochemistry and Post Harvest Technology. Division, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Vijay Kumar Garlapati
- Dept of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, HP-173234, India.
| |
Collapse
|
6
|
Designing biotechnological processes to reduce emulsions formation and improve oil recovery: Study of antifoams application. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Wang J, Huang J, Jiang S, Zhang J, Zhang Q, Ning Y, Fang M, Liu S. Parametric optimization and kinetic study of l-lactic acid production by homologous batch fermentation of Lactobacillus pentosus cells. Biotechnol Appl Biochem 2020; 68:809-822. [PMID: 32738151 DOI: 10.1002/bab.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/25/2020] [Indexed: 11/10/2022]
Abstract
Parametric optimization always plays important roles in bioengineering systems to obtain a high product yield under the proper conditions. The parametric conditions of lactic acid production by homologous batch fermentation of Lactobacillus pentosus cells was optimized by the Box-Behnken design. The highest l-lactic acid yield was obtained as 0.836 ± 0.003 g/g glucose with the productivity of 0.906 ± 0.003 g/(L × H) under the optimum conditions of 34.7 °C, pH 6.2, 148 rpm agitation speed, and 9.3 g/L nitrogen source concentration determined by quadratic response surface with high accuracy. The adequate kinetic models of cell growth rate, lactic production rate, and glucose consumption rate were also established to describe the fermentation behavior of L. pentosus cells with the correlation coefficients of 09985, 0.9990, and 0.9989, respectively.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, Syracuse, USA
| | - Jiaqi Huang
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, Syracuse, USA.,The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy, USA
| | - Shaoming Jiang
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, Syracuse, USA
| | - Jing Zhang
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, Syracuse, USA
| | - Quanquan Zhang
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, Syracuse, USA
| | - Yuchen Ning
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, Syracuse, USA
| | - Mudannan Fang
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, Syracuse, USA
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, Syracuse, USA
| |
Collapse
|
8
|
Kim EJ, Kim S, Choi HG, Han SJ. Co-production of biodiesel and bioethanol using psychrophilic microalga Chlamydomonas sp. KNM0029C isolated from Arctic sea ice. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:20. [PMID: 32021651 PMCID: PMC6995180 DOI: 10.1186/s13068-020-1660-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/21/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Biofuels, generated using microalgae as sustainable energy, have received a lot of attention. Microalgae can be cultivated at low cost with CO2 and solar energy without competition from edible crops. Psychrophilic microalgae can be a suitable feedstock to produce biofuels without the environmental constraints of low temperatures, because they can grow below 10 °C. However, there is a lack of efficient strategies using psychrophilic microalgae to produce biodiesel and bioethanol. Therefore, the current study aimed to optimize the production of biodiesel and bioethanol from Arctic Chlamydomonas sp. KNM0029C at low temperatures. RESULTS After incubation in a 20-L photobioreactor, fatty acid methyl ester (FAME) was extracted using modified FAME extraction methods, producing a maximum yield of 0.16-g FAME/g KNM0029C. Residual biomass was pretreated for bioethanol production, and the yields from different methods were compared. The highest bioethanol yield (0.22-g/g residual biomass) was obtained by pretreatment with enzyme (amyloglucosidase) after sonication. Approximately 300-mg biofuel was obtained, including 156-mg FAME biodiesel and 144-mg bioethanol per g dried cells, representing the highest recorded yield from psychrophilic microalgae. CONCLUSIONS This is the first to attempt at utilizing biomass from psychrophilic Arctic microalga Chlamydomonas sp. KNM0029C for the co-production of bioethanol and biodiesel, and it yielded the highest values among reported studies using psychrophilic organisms. These results can be used as a source for the efficient biofuel production using polar microalgae.
Collapse
Affiliation(s)
- Eun Jae Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990 Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990 Republic of Korea
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990 Republic of Korea
| | - Han-Gu Choi
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990 Republic of Korea
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990 Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990 Republic of Korea
| |
Collapse
|
9
|
Tan JS, Phapugrangkul P, Lee CK, Lai ZW, Abu Bakar MH, Murugan P. Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101293] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|