1
|
Katoch M, Singh G, Bijarnia E, Gupta AP, Azeem M, Rani P, Kumar J. Biodiversity of endosymbiont fungi associated with a marine sponge Lamellodysidea herbacea and their potential as antioxidant producers. 3 Biotech 2024; 14:146. [PMID: 38706926 PMCID: PMC11068721 DOI: 10.1007/s13205-024-03972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/01/2024] [Indexed: 05/07/2024] Open
Abstract
This study aims to isolate endosymbiontic fungi from the marine sponge Lamellodysidea herbacea and to explore their antioxidant potential. Marine-derived fungi, with their vast biodiversity, are considered a promising source of novel antioxidants which can replace synthetic ones. Marine sponges have previously reported bioactive properties that could ameliorate oxidative stress, particularly their associated fungi, producing high-frequency bioactive molecules (adaptogenic molecules) in response to stressors. 19 endosymbiont fungi associated with marine sponges were isolated, and their extracts were evaluated for their antioxidant capacities. Extract of an endosymbiont fungus, isolate SPG6, identified as Alternaria destruens, through surface electron microscopy (SEM) and ITS gene sequencing, showed broad range antioxidant activities (EC50 values) (free radical scavenging 32.54 mg L-1, Hydroxyl radical scavenging activity < 0.078 g L-1, total reducing power 0.114 g L-1, Chelating power 0.262 g L-1, H2O2 scavenging activity < 0.078 g L-1, and Superoxide radical scavenging activity > 5.0 g L-1). The extract of isolate SPG6 was fractioned and analyzed through GC-MS. Marine sponge-associated endosymbiont fungi are a rich source of antioxidant molecules. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03972-1.
Collapse
Affiliation(s)
- Meenu Katoch
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025 India
| | - Gurpreet Singh
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025 India
| | - Ekta Bijarnia
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - A. P. Gupta
- Quality Control Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - Mohd. Azeem
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - Pragya Rani
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
| | - J. Kumar
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025 India
| |
Collapse
|
2
|
Mulder R, Noordien N, Potgieter N. Comparing cytocompatibility of two fluoride-containing solutions and two resin-based restorative materials-a pilot study. FRONTIERS IN ORAL HEALTH 2024; 5:1330944. [PMID: 38650760 PMCID: PMC11033402 DOI: 10.3389/froh.2024.1330944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Background Cytocompatibility should always be considered, especially if the surface of treated carious lesions is close to soft tissue or is accidentally exposed to the oral soft tissue by the clinician. Methods The aim of the present study was to compare the cytocompatibility of two fluoride-containing liquids and two resin-containing restorative materials with buccal mucosa fibroblasts. The fluoride-containing materials were silver diamine fluoride and water-based silver fluoride. Results The statistical analysis was completed by comparing the positive control growth of the buccal mucosa fibroblasts to the growth of cells exposed to various materials. The one-way ANOVA with Tukey's HSD result was completed. All the assessed materials compared to the control wells for both the 24 and 48 h time intervals indicated a significant cytocompatibility result, except for the test wells with Stela (SDI) at the 24 h time interval. There was no significant difference between the step 2 liquids and the two dental materials in cytocompatibility at the 24 h interval. All four materials indicated no significant differences between the cytocompatibility of any dental materials for 48 h. Conclusion The cytocompatibility assessment for Riva Star and Riva Star Aqua with the direct method in a full dispensing drop is not viable for step 1 of the fluoride-containing liquids. The use of Stela Light Cure is a suitable material that will be in contact with buccal mucosa as it showed potential for increased cytocompatibility compared to Riva Light Cure. Riva Star Aqua is more cytocompatible than Riva Star.
Collapse
Affiliation(s)
- Riaan Mulder
- Department of Prothodontic Dentistry, University of the Western Cape, Cape Town, South Africa
| | - Naeemah Noordien
- Department of Orthodontics and Paediatric Dentistry, University of the Western Cape, Cape Town, South Africa
| | - Nicoline Potgieter
- Department of Orthodontics and Paediatric Dentistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
3
|
Han HJ, Hyun CG. Acenocoumarol Exerts Anti-Inflammatory Activity via the Suppression of NF-κB and MAPK Pathways in RAW 264.7 Cells. Molecules 2023; 28:molecules28052075. [PMID: 36903321 PMCID: PMC10004255 DOI: 10.3390/molecules28052075] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The repurposing of already-approved drugs has emerged as an alternative strategy to rapidly identify effective, safe, and conveniently available new therapeutic indications against human diseases. The current study aimed to assess the repurposing of the anticoagulant drug acenocoumarol for the treatment of chronic inflammatory diseases (e.g., atopic dermatitis and psoriasis) and investigate the potential underlying mechanisms. For this purpose, we used murine macrophage RAW 264.7 as a model in experiments aimed at investigating the anti-inflammatory effects of acenocoumarol in inhibiting the production of pro-inflammatory mediators and cytokines. We demonstrate that acenocoumarol significantly decreases nitric oxide (NO), prostaglandin (PG)E2, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Acenocoumarol also inhibits the expression of NO synthase (iNOS) and cyclooxygenase (COX)-2, potentially explaining the acenocoumarol-induced decrease in NO and PGE2 production. In addition, acenocoumarol inhibits the phosphorylation of mitogen-activated protein kinases (MAPKs), c-Jun N terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK), in addition to decreasing the subsequent nuclear translocation of nuclear factor κB (NF-κB). This indicates that acenocoumarol attenuates the macrophage secretion of TNF-α, IL-6, IL-1β, and NO, inducing iNOS and COX-2 expression via the inhibition of the NF-κB and MAPK signaling pathways. In conclusion, our results demonstrate that acenocoumarol can effectively attenuate the activation of macrophages, suggesting that acenocoumarol is a potential candidate for drug repurposing as an anti-inflammatory agent.
Collapse
|
4
|
Formulation Development of Fast Dissolving Microneedles Loaded with Cubosomes of Febuxostat: In Vitro and In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15010224. [PMID: 36678853 PMCID: PMC9863705 DOI: 10.3390/pharmaceutics15010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Febuxostat is a widely prescribed drug for the treatment of gout, which is a highly prevalent disease worldwide and is a major cause of disability in mankind. Febuxostat suffers from several limitations such as gastrointestinal disturbances and low oral bioavailability. Thus, to improve patient compliance and bioavailability, transdermal drug delivery systems of Febuxostat were developed for obtaining enhanced permeation. Cubosomes of Febuxostat were prepared using a bottom-up approach and loaded into a microneedle using a micromolding technique to achieve better permeation through the skin. Optimization of the process and formulation parameters were achieved using our design of experiments. The optimized cubosomes of Febuxostat were characterized for various parameters such as % entrapment efficiency, vesicle size, Polydispersity index, Transmission electron microscopy, in vitro drug release, Small angle X-ray scattering, etc. After loading it in the microneedle it was characterized for dissolution time, axial fracture force, scanning electron microscopy, in vitro drug release, pore closure kinetics, etc. It was also evaluated for various ex vivo characterizations such as in vitro cell viability, ex vivo permeation, ex vivo fluorescence microscopy and histopathology which indicates its safety and better permeation. In vivo pharmacokinetic studies proved enhanced bioavailability compared with the marketed formulation. Pharmacodynamic study indicated its effectiveness in a disease-induced rat model. The developed formulations were then subjected to the stability study, which proved its stability.
Collapse
|
5
|
Suárez DF, Pinzón-García AD, Sinisterra RD, Dussan A, Mesa F, Ramírez-Clavijo S. Uniaxial and Coaxial Nanofibers PCL/Alginate or PCL/Gelatine Transport and Release Tamoxifen and Curcumin Affecting the Viability of MCF7 Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193348. [PMID: 36234476 PMCID: PMC9565524 DOI: 10.3390/nano12193348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 05/11/2023]
Abstract
Breast cancer is the second cause of cancer death in women worldwide. The search for therapeutic and preventive alternatives has increased in recent years. One synthetic drug for patients with hormone receptor-positive tumours is tamoxifen citrate (TMX). Curcumin (Cur) is a natural compound that is being tested. Both were coupled with nanoscale-controlled and sustained release systems to increase the effectiveness of the treatment and reduce adverse effects. We produced a controlled release system based on uniaxial and coaxial polymeric nanofibers of polycaprolactone (PCL), alginate (Alg) and gelatine (Gel) for the transport and release of TMX and Cur, as a new alternative to breast cancer treatment. Nanofibers combining PCL-Alg and PCL-Gel were fabricated by the electrospinning technique and physicochemically characterised by thermal analysis, absorption spectroscopy in the infrared region and X-ray diffraction. Morphology and size were studied by scanning electron microscopy. Additionally, the release profile of TMX and Cur was obtained by UV-Vis spectroscopy. Additionally, the cytotoxic effect on breast cancer cell line MCF7 and peripheral-blood mononuclear cells (PBMCs) from a healthy donor were evaluated by a Resazurin reduction assay. These assays showed that PCL-TMX nanofiber was highly toxic to both cell types, while PCL-Cur was less toxic.
Collapse
Affiliation(s)
- Diego Fernando Suárez
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Delia Pinzón-García
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Rubén Darío Sinisterra
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anderson Dussan
- Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 110011, Colombia
| | - Fredy Mesa
- Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 110011, Colombia
| | - Sandra Ramírez-Clavijo
- Department of Biology, Grupo Ciencias Básicas Médicas, Faculty of Natural Science, Universidad del Rosario, Bogotá 110311, Colombia
- Correspondence:
| |
Collapse
|
6
|
Arabinoxylan-Based Microcapsules Being Loaded with Bee Products as Bioactive Food Components Are Able to Modulate the Cell Migration and Inflammatory Response-In Vitro Study. Nutrients 2022; 14:nu14122529. [PMID: 35745258 PMCID: PMC9228011 DOI: 10.3390/nu14122529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the research was to use bioactive heteropolysaccharides isolated from rye bran to obtain innovative systems for the controlled release of bioactive compounds. The core of the obtained encapsulates was honey and royal jelly. It was shown for the first time that preparations effectively ameliorated inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, decreasing the secretion of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and nitric oxide (NO). The in vitro digestion process revealed that bee products’ encapsulates were stronger oxidative stress reducers and had sustained ability to reduction in inflammation state mediators. The lack of inhibitory effect on migration rate of human microvascular endothelial cells (HMEC-1) endothelial cells and mouse embryonic fibroblasts (NIH-3T3), both cell models involved in wound healing process, additionally identified these preparations as agents potentially used in the management of inflammatory response. In the process of a simulated digestion in vitro, the innovative microcapsules showed 85% higher biostability and two to ten times better bioavailability, compared to natural bee products.
Collapse
|
7
|
Pinzón-García AD, Sinisterra R, Cortes M, Mesa F, Ramírez-Clavijo S. Polycaprolactone nanofibers as an adjuvant strategy for Tamoxifen release and their cytotoxicity on breast cancer cells. PeerJ 2021; 9:e12124. [PMID: 34760343 PMCID: PMC8556714 DOI: 10.7717/peerj.12124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the second leading cause of death in women, and tamoxifen citrate (TMX) is accepted widely for the treatment of hormone receptor-positive breast cancers. Several local drug-delivery systems, including nanofibers, have been developed for antitumor treatment. Nanofibers are biomaterials that mimic the natural extracellular matrix, and they have been used as controlled release devices because they enable highly efficient drug loading. The purpose of the present study was to develop polycaprolactone (PCL) nanofibers incorporating TMX for use in the treatment of breast tumors. Pristine PCL and PCL-TMX nanofibers were produced by electrospinning and characterized physiochemically using different techniques. In addition, an in vitro study of TMX release from the nanofibers was performed. The PCL-TMX nanofibers showed sustained TMX release up to 14 h, releasing 100% of the TMX. The Resazurin reduction assay was used to evaluate the TMX cytotoxicity on MCF-7 breast cancer cell line and PBMCs human. The PCL-TMX nanofiber was cytotoxic toPBMCs and MCF-7. Based on these results, the PCL-TMX nanofibers developed have potential as an alternative for local chronic TMX use for breast cancer treatment, however tissue tests must be done.
Collapse
Affiliation(s)
- Ana D Pinzón-García
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ruben Sinisterra
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Cortes
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fredy Mesa
- Faculty of Natural Sciences, Department of Biology, Universidad del Rosario, Bogotá, Colombia
| | - Sandra Ramírez-Clavijo
- Faculty of Natural Sciences, Department of Biology, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
8
|
Biernasiuk A, Banasiewicz A, Masłyk M, Martyna A, Janeczko M, Baranowska-Łączkowska A, Malm A, Łączkowski KZ. Synthesis and Physicochemical Characterization of Novel Dicyclopropyl-Thiazole Compounds as Nontoxic and Promising Antifungals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3500. [PMID: 34201678 PMCID: PMC8269541 DOI: 10.3390/ma14133500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
There is a need to search for new antifungals, especially for the treatment of the invasive Candida infections, caused mainly by C. albicans. These infections are steadily increasing at an alarming rate, mostly among immunocompromised patients. The newly synthesized compounds (3a-3k) were characterized by physicochemical parameters and investigated for antimicrobial activity using the microdilution broth method to estimate minimal inhibitory concentration (MIC). Additionally, their antibiofilm activity and mode of action together with the effect on the membrane permeability in C. albicans were investigated. Biofilm biomass and its metabolic activity were quantitatively measured using crystal violet (CV) staining and tetrazolium salt (XTT) reduction assay. The cytotoxic effect on normal human lung fibroblasts and haemolytic effect were also evaluated. The results showed differential activity of the compounds against yeasts (MIC = 0.24-500 µg/mL) and bacteria (MIC = 125-1000 µg/mL). Most compounds possessed strong antifungal activity (MIC = 0.24-7.81 µg/mL). The compounds 3b, 3c and 3e, showed no inhibitory (at 1/2 × MIC) and eradication (at 8 × MIC) effect on C. albicans biofilm. Only slight decrease in the biofilm metabolic activity was observed for compound 3b. Moreover, the studied compounds increased the permeability of the membrane/cell wall of C. albicans and their mode of action may be related to action within the fungal cell wall structure and/or within the cell membrane. It is worth noting that the compounds had no cytotoxicity effect on pulmonary fibroblasts and erythrocytes at concentrations showing anticandidal activity. The present studies in vitro confirm that these derivatives appear to be a very promising group of antifungals for further preclinical studies.
Collapse
Affiliation(s)
- Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Anna Banasiewicz
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (A.B.); (K.Z.Ł.)
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | - Aleksandra Martyna
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | | | - Anna Malm
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (A.B.); (K.Z.Ł.)
| |
Collapse
|
9
|
Delyanee M, Solouk A, Akbari S, Daliri Joupari M. Engineered hemostatic bionanocomposite of poly(lactic acid) electrospun mat and amino‐modified halloysite for potential application in wound healing. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department Amirkabir University of Technology Tehran Iran
| | - Atefeh Solouk
- Biomedical Engineering Department Amirkabir University of Technology Tehran Iran
| | - Somaye Akbari
- Textile Engineering Department Amirkabir University of Technology Tehran Iran
| | - Morteza Daliri Joupari
- Department of Animal and Marine Biotechnology National Institute of Genetic Engineering and Biotechnology Tehran Iran
| |
Collapse
|
10
|
Habibzadeh SZ, Salehzadeh A, Moradi-Shoeili Z, Shandiz SAS. A novel bioactive nanoparticle synthesized by conjugation of 3-chloropropyl trimethoxy silane functionalized Fe 3O 4 and 1-((3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-phenylthiazol-2-yl) hydrazine: assessment on anti-cancer against gastric AGS cancer cells. Mol Biol Rep 2020; 47:1637-1647. [PMID: 31933263 DOI: 10.1007/s11033-020-05251-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/03/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Gastric cancer is one of the common types of cancer around the world which has few therapeutic options. Nitrogen heterocyclic derivatives such as thiazoles are used as the basis for the progression of the drugs. The objective of this study was to synthesize the 1-((3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl) methylene)-2-(4-phenylthiazol-2-yl) hydrazine (TP) conjugating with (3-Chloropropyl) trimethoxysilane (CPTMOS)-coated Fe3O4 nanoparticles (NPs) for anti-cancer activities against gastric AGS cancer cell line. The synthesized Fe3O4@CPTMOS/TP NPs were characterized by FT-IR, XRD, EDX, SEM, TEM and Zeta potential analyses. To evaluate the toxicity of the above compound after AGS cell culture in RPMI1640 medium, the cells were treated at different concentrations for 24 h. The viability of the cells was investigated by MTT assay. Moreover, apoptosis induced by Fe3O4@CPTMOS/TP NPs was assessed by Hoechst 33432 staining, oxygen activity specification evaluation, caspase-3 activity assay, cell cycle analysis and annexin V/PI staining followed by flow cytometry analysis. The IC50 value in AGS cells was estimated to be 95.65 µg/ml. The flow cytometry results of Fe3O4@CPTMOS/TP NPs revealed a large number of cells in the apoptotic regions compared to the control cells and the cells treated with TP. In addition, the amount of ROS production and caspase-3 activity increased in the treated cells with Fe3O4@CPTMOS/TP NPs. The percentage of inhibited cancer cells in the G0/G1 phase increased under the treatment in the binding state to the nonionic iron oxide nanoparticles. Overall, this study showed that Fe3O4@CPTMOS/TP NP had effect on induction of apoptosis and inhibiting the growth of AGS cancer cells. Thus, Fe3O4@CPTMOS/TP NP can be considered as a new anti-cancer candid for next phase of studies on mouse models.
Collapse
Affiliation(s)
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Zeinab Moradi-Shoeili
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| | | |
Collapse
|
11
|
Kiiskinen J, Merivaara A, Hakkarainen T, Kääriäinen M, Miettinen S, Yliperttula M, Koivuniemi R. Nanofibrillar cellulose wound dressing supports the growth and characteristics of human mesenchymal stem/stromal cells without cell adhesion coatings. Stem Cell Res Ther 2019; 10:292. [PMID: 31547864 PMCID: PMC6757411 DOI: 10.1186/s13287-019-1394-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND In the field of regenerative medicine, delivery of human adipose-derived mesenchymal stem/stromal cells (hASCs) has shown great promise to promote wound healing. However, a hostile environment of the injured tissue has shown considerably to limit the survival rate of the transplanted cells, and thus, to improve the cell survival and retention towards successful cell transplantation, an optimal cell scaffold is required. The objective of this study was to evaluate the potential use of wood-derived nanofibrillar cellulose (NFC) wound dressing as a cell scaffold material for hASCs in order to develop a cell transplantation method free from animal-derived components for wound treatment. METHODS Patient-derived hASCs were cultured on NFC wound dressing without cell adhesion coatings. Cell characteristics, including cell viability, morphology, cytoskeletal structure, proliferation potency, and mesenchymal cell and differentiation marker expression, were analyzed using cell viability assays, electron microscopy, immunocytochemistry, and quantitative or reverse transcriptase PCR. Student's t test and one-way ANOVA followed by a Tukey honestly significant difference post hoc test were used to determine statistical significance. RESULTS hASCs were able to adhere to NFC dressing and maintained high cell survival without cell adhesion coatings with a cell density-dependent manner for the studied period of 2 weeks. In addition, NFC dressing did not induce any remarkable cytotoxicity towards hASCs or alter the morphology, proliferation potency, filamentous actin structure, the expression of mesenchymal vimentin and extracellular matrix (ECM) proteins collagen I and fibronectin, or the undifferentiated state of hASCs. CONCLUSIONS As a result, NFC wound dressing offers a functional cell culture platform for hASCs to be used further for in vivo wound healing studies in the future.
Collapse
Affiliation(s)
- Jasmi Kiiskinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Arto Merivaara
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Tiina Hakkarainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Minna Kääriäinen
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Raili Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| |
Collapse
|
12
|
Dias AM, da Silva FG, Monteiro APDF, Pinzón-García AD, Sinisterra RD, Cortés ME. Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109798. [PMID: 31349501 DOI: 10.1016/j.msec.2019.109798] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 02/20/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022]
Abstract
Periodontal diseases (PD) are mixed bacterial infections caused by microorganisms that colonize the tooth surface, leading to destructions at tooth-supporting tissues. Several local delivery systems, as nanofibers, have been developed for the treatment of PD. The purpose of the present study was developing polycaprolactone (PCL) nanofibers incorporating two antibacterial agents, OTC and ZnO, for use in the treatment of PD. Nanofibers were produced by electrospinning method: PCL loaded with ZnO (PCL-Z), PCL loaded with OTC (PCL-OTC), PCL loaded with OTC and ZnO (PCL-OTCz) and pristine PCL (PCL-P). The nanofibers were characterized physicochemically using different techniques. In addition, in vitro study of the OTC release from the nanofibers was performed. The PCL-OCT showed sustained release of the drug up to 10 h, releasing 100% of OTC. However, the PCL-OTCz nanofiber showed a slow release of OTC up to 120 h (5th day) with 54% of drug retention. The cytotoxicity assay showed that PCL-OTC nanofiber was slightly cytotoxic after 48 h and the other nanofibers were non-cytotoxic. The antibacterial activity of the nanofibers was evaluated by qualitative and quantitative analysis and against mixed bacterial culture, composed of four Gram-negative anaerobic bacteria involved in periodontal diseases. The disk diffusion method showed that the PCL-OTC displayed higher inhibition zone than PCL-OTCz (p < 0.001). The quantitative analysis, evaluated by broth culture, showed that the PCL-OTC and PCL-OTCz exhibited excellent activity against a mixed bacterial culture with growth inhibition of 98.0% and 97.5%, respectively. Based on these results, the PCL-OTCz nanofibers developed have great potential as a drug delivery system for the PD treatment.
Collapse
Affiliation(s)
- Alexa Magalhães Dias
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG CEP 31270901, Brazil
| | - Flávia Gontijo da Silva
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG CEP 31270901, Brazil
| | - Ana Paula de Figueiredo Monteiro
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG CEP 31270901, Brazil
| | - Ana Delia Pinzón-García
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG CEP 31270901, Brazil
| | - Rubén D Sinisterra
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG CEP 31270901, Brazil
| | - Maria Esperanza Cortés
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG CEP 31270901, Brazil.
| |
Collapse
|