1
|
Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes (Basel) 2022. [DOI: 10.3390/pr10122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biotrickling filtration is a well-established technology for the treatment of air polluted with odorous and volatile organic compounds (VOCs). Besides dozens of successful industrial applications of this technology, there are still gaps in a full understanding and description of the mechanisms of biotrickling filtration. This review focuses on recent research results on biotrickling filtration of air polluted with single and multiple VOCs, as well as process modeling. The modeling offers optimization of a process design and performance, as well as allows deeper understanding of process mechanisms. An overview of the developments of models describing biotrickling filtration and conventional biofiltration, as primarily developed and in many aspects through similar processes, is presented in this paper.
Collapse
|
2
|
Simulation of the Biofiltration of Sulfur Compounds: Effect of the Partition Coefficients. Processes (Basel) 2022. [DOI: 10.3390/pr10071325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effect of the partition coefficient on the simulation of the operation of a biotrickling filter treating a mixture of sulfur compounds was analyzed to evaluate the pertinence of using Henry’s law in determining its removal capacity. The analysis consisted of the simulation of a biotrickling filter that bio-oxides hydrogen sulfide (H2S), dimethyl sulfide (DMS), methyl mercaptan (MM) and dimethyl disulfide (DMDS) using different types of models for determining the partition coefficient: Henry’s law for pure water, Henry’s law adjusted from experimental data, a mixed model (Extended UNIQUAC) and a semi-empirical model of two-parameters. The simulations were compared with experimental data. It was observed that Henry’s law for pure water could produce significant deviations from empirical data due to the liquid phase not being pure water. The two-parameter model better fits with similar results compared to the extended UNIQUAC model, with a lower calculation cost and necessary parameter amount. It shows that semi-empirical models can considerably improve simulation accuracy where complex phase interactions are present.
Collapse
|
3
|
Comparative Evaluation of Selected Biological Methods for the Removal of Hydrophilic and Hydrophobic Odorous VOCs from Air. Processes (Basel) 2019. [DOI: 10.3390/pr7040187] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Due to increasingly stringent legal regulations as well as increasing social awareness, the removal of odorous volatile organic compounds (VOCs) from air is gaining importance. This paper presents the strategy to compare selected biological methods intended for the removal of different air pollutants, especially of odorous character. Biofiltration, biotrickling filtration and bioscrubbing technologies are evaluated in terms of their suitability for the effective removal of either hydrophilic or hydrophobic VOCs as well as typical inorganic odorous compounds. A pairwise comparison model was used to assess the performance of selected biological processes of air treatment. Process efficiency, economic, technical and environmental aspects of the treatment methods are taken into consideration. The results of the calculations reveal that biotrickling filtration is the most efficient method for the removal of hydrophilic VOCs while biofilters enable the most efficient removal of hydrophobic VOCs. Additionally, a simple approach for preliminary method selection based on a decision tree is proposed. The presented evaluation strategies may be especially helpful when considering the treatment strategy for air polluted with various types of odorous compounds.
Collapse
|