1
|
Kumar V, Kaushik NK, Singh D, Singh B. Exploring novel potential of mycosynthesized magnetic nanoparticles for phosphatase immobilization and biological activity. Int J Biol Macromol 2024; 280:135740. [PMID: 39304049 DOI: 10.1016/j.ijbiomac.2024.135740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Among different microbes, fungi are proficient candidates for the extracellular synthesis of iron nanoparticles. For biogenic synthesis of iron nanoparticles, a thermophilic mould Myceliophthora thermophila BJTLRMDU7 was used in this study. Mycogenic magnetic nanoparticles were used for phosphatase immobilization and therapeutic applications such as antimicrobial and antimalarial activity. Firstly, the phosphatase was immobilized on biogenic iron nanoparticles with an efficiency of >56 %. Immobilized enzyme was optimally active at 60 °C and pH 5. Immobilized phosphatase was recycled using external magnetic field up to 4th cycle retaining >50 % activity. The immobilized phosphatase efficiently released inorganic phosphate from different flours such as wheat, maize and gram at 37 °C and 60 °C. There was continuous increase in the release of inorganic phosphorus from all samples with incubation time at 37 °C and slight reduction at 60 °C. These nanoparticles showed the effective antimicrobial activity against Bacillus subtilis, Escherichia coli and Myceliophthora thermophila. Further, the synthesized iron nanoparticles showed antimalarial potential against Plasmodium falciparum. Biogenic nanoparticles did not exhibit hemolytic activity and cytotoxicity. Therefore, biogenic iron nanoparticles could be used as a suitable matrix for immobilization of enzymes and safe therapeutics.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida 201313, U.P., India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh 123029, Haryana, India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India; Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
2
|
Saleh SAA, Mostafa FA, Ahmed SA, Zaki ER, Salama WH, Abdel Wahab WA. Date nawah powder as a promising waste for β-mannanase production from a new isolate Aspergillus niger MSSFW, statistically improving production and enzymatic characterization. Int J Biol Macromol 2024; 277:134447. [PMID: 39098698 DOI: 10.1016/j.ijbiomac.2024.134447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
β-Mannanase producing fungus was isolated from coffee powder waste and identified as Aspergillus niger MSSFW (Gen Bank accession number OR668928). Dates nawah powder as industrial and agricultural waste was the most inducer of β-mannanase production. The Plackett-Burman and Central Composite designs were used to improve β-mannanase titer. Optimization studies enhanced the enzyme yield with approximate 13.50-times. β-Mannanase was purified by Sephadex G-150 gel filtration column and the molecular weight was estimated to be 60 kDa by SDS-PAGE. Crude and purified β-mannanase displayed maximum activity at temperature 60 °C and 50 °C, respectively. Crude β-mannanase showed an activation energy value 2.35-times higher than the purified enzyme. Activation energy for thermal denaturation of the purified β-mannanase was 1.08-times higher than that of the crude enzyme. Purified β-mannanase exhibited higher deactivation rate constant (Kd) and lower half-life (t0.5) and decimal reduction time (D-value) compared with the crude enzyme. Thermodynamic parameters of enthalpy, entropy, and free energy values for crude and purified β-mannanase were calculated. Substrate kinetic parameters suggested that the purified β-mannanase had a strong affinity toward locust bean gum by showing 3.44-times lower Km and 1.99-times higher Vmax compared to the crude enzyme.
Collapse
Affiliation(s)
- Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Faten A Mostafa
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Samia A Ahmed
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Eman R Zaki
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Walaa H Salama
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
3
|
Hussain A, Parveen F, Saxena A, Ashfaque M. A review of nanotechnology in enzyme cascade to address challenges in pre-treating biomass. Int J Biol Macromol 2024; 270:132466. [PMID: 38761904 DOI: 10.1016/j.ijbiomac.2024.132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Nanotechnology has become a revolutionary technique for improving the preliminary treatment of lignocellulosic biomass in the production of biofuels. Traditional methods of pre-treatment have encountered difficulties in effectively degrading the intricate lignocellulosic composition, thereby impeding the conversion of biomass into fermentable sugars. Nanotechnology has enabled the development of enzyme cascade processes that present a potential solution for addressing the limitations. The focus of this review article is to delve into the utilization of nanotechnology in the pretreatment of lignocellulosic biomass through enzyme cascade processes. The review commences with an analysis of the composition and structure of lignocellulosic biomass, followed by a discussion on the drawbacks associated with conventional pre-treatment techniques. The subsequent analysis explores the importance of efficient pre-treatment methods in the context of biofuel production. We thoroughly investigate the utilization of nanotechnology in the pre-treatment of enzyme cascades across three distinct sections. Nanomaterials for enzyme immobilization, enhanced enzyme stability and activity through nanotechnology, and nanocarriers for controlled enzyme delivery. Moreover, the techniques used to analyse nanomaterials and the interactions between enzymes and nanomaterials are introduced. This review emphasizes the significance of comprehending the mechanisms underlying the synergy between nanotechnology and enzymes establishing sustainable and environmentally friendly nanotechnology applications.
Collapse
Affiliation(s)
- Akhtar Hussain
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Fouziya Parveen
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Ayush Saxena
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| |
Collapse
|
4
|
Diasi M, Singh R, Mahapatra AD, L R, Patel H, Ganatra H, Datta B. Ammonium release in synthetic and human urine by a urease immobilized nanoconstruct. RSC Adv 2024; 14:6972-6984. [PMID: 38414993 PMCID: PMC10898436 DOI: 10.1039/d3ra07606g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
In this work, we have studied the ability of urease immobilized on glutaraldehyde crosslinked chitosan coated magnetic iron oxide nanoparticles (Urease/GA/CS/MIONPs), for the hitherto unreported comparative hydrolysis of urea in synthetic (SUr) and real human urine (HUr). The prepared Urease/GA/CS/MIONPs were characterized by a combination of Fourier transform infrared spectroscopy (FTIR), field emission-scanning-electron-microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and dynamic light scattering (DLS). The nanoconstructs display the highest ammonium ion liberation post-urea hydrolysis in 1/20 or 1/24-fold dilutions of SUr and HUr, respectively. The optimum activity of immobilized urease is observed at pH 7, and the nanoconstructs facilitate efficient urea-hydrolysis till at least 45 °C. Kinetic analysis of the immobilized urease shows km and vmax of 14.81 mM, 12.36 mM, and 18.55 μM min-1 and 10.10 μM min-1, towards SUr and HUr, respectively. The magnetization of the immobilized urease is suitable for reuse across multiple cycles of urea hydrolysis in SUr and HUr. The robust performance of Urease/GA/CS/MIONPs in SUr and HUr is promising for generating ammonium as a useable source of nitrogen from human urine, and underscores the suitability of SUr as a urine mimic for such interventions.
Collapse
Affiliation(s)
- Manab Diasi
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Rinki Singh
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Renuka L
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Hitarth Patel
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Hasit Ganatra
- Blasto Research Private Limited Ahmedabad Gujarat India
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| |
Collapse
|
5
|
Dikbas L. In vitro assessment of the immobilized mannanase enzyme against infection-causing Candida. Future Microbiol 2023; 18:885-896. [PMID: 37584513 DOI: 10.2217/fmb-2022-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Background: Developing an effective treatment for fungal infections is among contemporary medicine's challenges. In this study we aimed to eradicate mannan in pathogenic Candidae's cell walls using a nontoxic method, mannanase. Materials & Methods: We investigated the in vitro antifungal activities of mannanase immobilized on zinc oxide nanoparticles (ZnONps) and reduced graphene oxide nanoparticles (RGONps), as well as therapeutics against Candidae. Mannanase was purified from Bacillus invictae (activity: 5.15 EU/ml; range: 60-80%) and then immobilized it to ZnO and RGO to enhance its effectiveness. Results: Mannanase immobilized on ZnONps had the highest activity, with a value of 4.97 EU/ml, more effective than amphotericin-B. However, it could not reach the inhibition rates of other antifungals. Conclusion: Mannanase immobilized on ZnONps could be an effective fungicide for Candida biocontrol.
Collapse
Affiliation(s)
- Levent Dikbas
- Specialist in Obstetrics & Gynecology, Reyap Hospital, IVF Center, Tekirdag, Turkey
| |
Collapse
|
6
|
Mohapatra BR. Fermentation medium optimization, molecular modelling and docking analysis of the alginate lyase of a novel Pseudomonas sp. LB56 isolated from seaweed waste. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2071635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Bidyut Ranjan Mohapatra
- Department of Biological and Chemical Sciences, Faculty of Science and Technology, The University of the West Indies, Cave Hill Campus,, Bridgetown, Barbados
| |
Collapse
|
7
|
Sharma P, Bano A, Pratap Singh S, Atkinson JD, Shiung Lam S, Iqbal HM, Wah Tong Y. Nanomaterials as highly efficient photocatalysts used for bioenergy and biohydrogen production from waste toward a sustainable environment. FUEL 2022; 329:125408. [DOI: 10.1016/j.fuel.2022.125408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
8
|
The Purification and Biochemical Characterization of a Weissella cibaria F1 Derived β-Mannanase for Its Use in the Preparation of Konjac Oligo-Glucomannan with Immunomodulatory Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mannanase with a molecular weight of 33.1 kDa was purified from Weissella cibaria F1. The F1 mannanase contained 289 amino acid residues and shared 70.0% similarity with mannanase from Bacillus subtilis (P55278 (MANB_BACIU)). The optimum reaction conditions of F1 mannanase were 50 °C and pH 6.5. After incubation at pH 4.5–8.0 and 30–60 °C for 2 h, the enzyme activity remained above 60%. The effects of metal ions on mannanase enzyme activity were measured, and Mn2+, Mg2+, and Cu2+ increased enzyme activity. The Km (16.96 ± 0.01 μmol·mL−1) and Vmax (1119.05 ± 0.14 μmol·min−1) values showed that the enzyme exhibited high affinity for locust bean gum. Mannanase was used to hydrolyze konjac glucomannan to produce konjac oligo-glucomannan (KOGM). KOGM increased the proliferation and phagocytosis of RAW264.7 macrophages and enhanced nitric oxide, and cytokine production in macrophages, which showed potent immunostimulatory activity. In this study, the advantages of mannanase derived from lactic acid bacteria were utilized to expand the application of KOGM in the medical field, which is helpful to explore the broad prospects of KOGM in functional food or medicine.
Collapse
|
9
|
Hasan M, Zafar A, Jabbar M, Tariq T, Manzoor Y, Ahmed MM, Hassan SG, Shu X, Mahmood N. Trident Nano-Indexing the Proteomics Table: Next-Version Clustering of Iron Carbide NPs and Protein Corona. Molecules 2022; 27:molecules27185754. [PMID: 36144499 PMCID: PMC9500999 DOI: 10.3390/molecules27185754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Protein corona composition and precise physiological understanding of differentially expressed proteins are key for identifying disease biomarkers. In this report, we presented a distinctive quantitative proteomics table of molecular cell signaling differentially expressed proteins of corona that formed on iron carbide nanoparticles (NPs). High-performance liquid chromatography/electrospray ionization coupled with ion trap mass analyzer (HPLC/ESI-Orbitrap) and MASCOT helped quantify 142 differentially expressed proteins. Among these proteins, 104 proteins showed upregulated behavior and 38 proteins were downregulated with respect to the control, whereas 48, 32 and 24 proteins were upregulated and 8, 9 and 21 were downregulated CW (control with unmodified NPs), CY (control with modified NPs) and WY (modified and unmodified NPs), respectively. These proteins were further categorized on behalf of their regularity, locality, molecular functionality and molecular masses using gene ontology (GO). A STRING analysis was used to target the specific range of proteins involved in metabolic pathways and molecular processing in different kinds of binding functionalities, such as RNA, DNA, ATP, ADP, GTP, GDP and calcium ion bindings. Thus, this study will help develop efficient protocols for the identification of latent biomarkers in early disease detection using protein fingerprints.
Collapse
Affiliation(s)
- Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Ayesha Zafar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Maryum Jabbar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yasmeen Manzoor
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shahbaz Gul Hassan
- College of Information Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Nasir Mahmood
- School of Science, RMIT University, Victoria 3000, Australia
- Correspondence: (M.H.); (X.S.); (N.M.)
| |
Collapse
|
10
|
Fabrication of chitosan-coated magnetite nanobiocatalyst with Bacillus atrophaeus γ-glutamyl transpeptidase and its application to the synthesis of a bioactive peptide SCV-07. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Sadaqat B, Sha C, Dar MA, Dhanavade MJ, Sonawane KD, Mohamed H, Shao W, Song Y. Modifying Thermostability and Reusability of Hyperthermophilic Mannanase by Immobilization on Glutaraldehyde Cross-Linked Chitosan Beads. Biomolecules 2022; 12:biom12070999. [PMID: 35883557 PMCID: PMC9312517 DOI: 10.3390/biom12070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
In the current study, the purified β-mannanase (Man/Cel5B) from Thermotoga maritima was immobilized on glutaraldehyde cross-linked chitosan beads. The immobilization of Man/Cel5B on chitosan beads was confirmed by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. After immobilization, the protein loading efficiency and immobilization yield were found to be 73.3% and 71.8%, respectively. The optimum pH for both free and immobilized enzymes was found to be pH 5.5. However, the optimum temperature of immobilized Man/Cel5B increased by 10 °C, from 85 °C (free Man/Cel5B) to 95 °C (Immobilized). The half-life of free and immobilized enzymes was found to be 7 h and 9 h, respectively, at 85 °C owing to the higher thermostability of immobilized Man/Cel5B. The increase in thermostability was also demonstrated by an increase in the energy of deactivation (209 kJmol−1) for immobilized enzyme compared to its native form (92 kJmol−1), at 85 °C. Furthermore, the immobilized Man/Cel5B displayed good operational stability as it retained 54% of its original activity after 15 repeated catalytic reactions concerning its free form.
Collapse
Affiliation(s)
- Beenish Sadaqat
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (B.S.); (H.M.)
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; (C.S.); (M.A.D.)
| | - Chong Sha
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; (C.S.); (M.A.D.)
| | - Mudasir Ahmad Dar
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; (C.S.); (M.A.D.)
| | - Maruti J. Dhanavade
- Department of Microbiology, Bharati Vidyapeeth’s Dr Patangrao Kadam Mahavidyalaya College, Sangli 416416, India;
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, India;
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (B.S.); (H.M.)
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Weilan Shao
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; (C.S.); (M.A.D.)
- Correspondence: (W.S.); (Y.S.)
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (B.S.); (H.M.)
- Correspondence: (W.S.); (Y.S.)
| |
Collapse
|
12
|
Cong H, Ma Z, Hu M, Han J, Wang X, Han Y, Li Y, Sun G. Surface Gelatin-Coated β-Mannanase-Immobilized Lignin for Delayed Release of β-Mannanase to Remediate Guar-Based Fracturing Fluid Damage. ACS OMEGA 2022; 7:11722-11730. [PMID: 35449942 PMCID: PMC9017098 DOI: 10.1021/acsomega.1c06817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Herein, we developed an efficient and convenient method to address the problem of thickener decomposition in the low- permeability oilfield production process. It is crucial to design breakers that reduce viscosity by delaying thickener decomposition in appropriate environments. By using lignin in biomass as a substrate for β-mannanase immobilization (MIL), we fabricated a gel breaker, surface gelatin-coated β-mannanase-immobilized lignin (Ge@MIL). Through experiments and performance tests, we confirmed that the prepared Ge@MIL can release enzymes at a specific temperature, meanwhile having temperature-sensitive phase change properties and biodegradability. The results also show the tight tuning over the surface coating of Ge@MIL by a water-in-oil emulsion. Therefore, the prepared Ge@MIL has a promising application in the field of oil extraction as a green and efficient temperature-sensitive sustained-release capsule.
Collapse
Affiliation(s)
- Haonan Cong
- Liaoning
Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative
Innovation Center for Lignocellulosic Biorefinery, College of Light
Industry and Chemical Engineering, Dalian
Polytechnic University, Dalian 116034, China
| | - Zihao Ma
- Liaoning
Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative
Innovation Center for Lignocellulosic Biorefinery, College of Light
Industry and Chemical Engineering, Dalian
Polytechnic University, Dalian 116034, China
| | - Meixi Hu
- Liaoning
Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative
Innovation Center for Lignocellulosic Biorefinery, College of Light
Industry and Chemical Engineering, Dalian
Polytechnic University, Dalian 116034, China
| | - Junjie Han
- Department
of Research and Development, Dalian Chivy
Biotechnology CO., LTD., Dalian 116034, China
| | - Xing Wang
- Liaoning
Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative
Innovation Center for Lignocellulosic Biorefinery, College of Light
Industry and Chemical Engineering, Dalian
Polytechnic University, Dalian 116034, China
| | - Ying Han
- Liaoning
Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative
Innovation Center for Lignocellulosic Biorefinery, College of Light
Industry and Chemical Engineering, Dalian
Polytechnic University, Dalian 116034, China
| | - Yao Li
- Liaoning
Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative
Innovation Center for Lignocellulosic Biorefinery, College of Light
Industry and Chemical Engineering, Dalian
Polytechnic University, Dalian 116034, China
| | - Guangwei Sun
- Liaoning
Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative
Innovation Center for Lignocellulosic Biorefinery, College of Light
Industry and Chemical Engineering, Dalian
Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Mohapatra BR. Solid-state fermentation conditions optimization, homology modelling and molecular docking of β-mannanase of a novel Streptomyces species LB66 isolated from Sargassum seaweed waste. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2010719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bidyut R. Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| |
Collapse
|
14
|
Nanomaterial conjugated lignocellulosic waste: cost-effective production of sustainable bioenergy using enzymes. 3 Biotech 2021; 11:480. [PMID: 34790504 DOI: 10.1007/s13205-021-03002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/26/2021] [Indexed: 01/28/2023] Open
Abstract
The demand for novel and renewable sources of energy has increased as a result of rapid population growth, limited sources of bioenergy, and environmental pollution, caused by excessive use of fossil fuels. The need to meet future energy demands have motivated researchers to search for alternative and sustainable sources of energy. The bioconversion of lignocellulosic waste (agricultural and food waste) into biofuels shows competitive promises. Lignocellulosic waste is easily accessible and has a large enzyme system that can be immobilised onto nano-matrices. Consequently, resulting in higher biofuel production and process efficiency. However, the excessive production cost of the current procedures, which involve physical, chemical, and enzymatic reactions, is limited. The use of nanomaterials has recently been shown to concentrate lignocellulosic waste, therefore, reviewing the quest for efficient production of sustainable and cost-effective development of bioenergy from lignocellulosic wastes. This review paper explores the advanced strategies of using nanobiotechnology to combine enzyme-conjugated nanosystems for the cost-effective production of sustainable bioenergy solutions. This research will help to develop an inexpensive, eco-friendly technology for biofuels production and also help overcome the environmental burden of lignocellulosic waste worldwide.
Collapse
|
15
|
Bäumgen M, Dutschei T, Bornscheuer UT. Marine Polysaccharides: Occurrence, Enzymatic Degradation and Utilization. Chembiochem 2021; 22:2247-2256. [PMID: 33890358 PMCID: PMC8360166 DOI: 10.1002/cbic.202100078] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Macroalgae species are fast growing and their polysaccharides are already used as food ingredient due to their properties as hydrocolloids or they have potential high value bioactivity. The degradation of these valuable polysaccharides to access the sugar components has remained mostly unexplored so far. One reason is the high structural complexity of algal polysaccharides, but also the need for suitable enzyme cocktails to obtain oligo- and monosaccharides. Among them, there are several rare sugars with high value. Recently, considerable progress was made in the discovery of highly specific carbohydrate-active enzymes able to decompose complex marine carbohydrates such as carrageenan, laminarin, agar, porphyran and ulvan. This minireview summarizes these achievements and highlights potential applications of the now accessible abundant renewable resource of marine polysaccharides.
Collapse
Affiliation(s)
- Marcus Bäumgen
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Theresa Dutschei
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| |
Collapse
|