1
|
Yuan X, Yan F, Gao L, Ma Q, Wang J. Hypericin as a potential drug for treating Alzheimer's disease and type 2 diabetes with a view to drug repositioning. CNS Neurosci Ther 2023; 29:3307-3321. [PMID: 37183545 PMCID: PMC10580347 DOI: 10.1111/cns.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
AIMS Alzheimer's disease (AD) and type 2 diabetes (T2D) are two of the most common diseases in elderly population and they have a high rate of comorbidity. Study has revealed that T2D is a major risk factor of AD, and thus exploring therapeutic approaches that can target both diseases has drawn much interest in recent years. In this study, we tried to explore drugs that could be potentially used to prevent or treat both AD and T2D via a drug repositioning approach. METHODS We first searched the known drugs that may be effective to T2D treatment based on the network distance between the T2D-associated genes and drugs deposited in the DrugBank database. Then, via molecular docking, we further screened these drugs by examining their interaction with islet amyloid polypeptide (IAPP) and Aβ42 peptide, the key components involved in the pathogenesis of T2D or AD. Finally, the binding between the selected drug candidates and the target proteins was verified by molecular dynamics (MD) simulation; and the potential function of the drug candidates and the corresponding targets were analyzed. RESULTS From multiple resources, 734 T2D-associated genes were collected, and a list of 1109 drug candidates for T2D was obtained. We found that hypericin had the lowest binding energy and the most stable interaction with either IAPP or Aβ42 peptide. In addition, we also found that the target genes regulated by hypericin were differentially expressed in the tissues related to the two diseases. CONCLUSION Our results show that hypericin may be able to bind with IAPP and Aβ42 stably and prevent their accumulation, and thus could be a promising drug candidate for treating the comorbidity of AD and T2D.
Collapse
Affiliation(s)
- Xin Yuan
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Fei Yan
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Li‐Hui Gao
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Qian‐Hui Ma
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Ju Wang
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| |
Collapse
|
2
|
The common genes involved in the pathogenesis of Alzheimer's disease and type 2 diabetes and their implication for drug repositioning. Neuropharmacology 2023; 223:109327. [PMID: 36368623 DOI: 10.1016/j.neuropharm.2022.109327] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The prevalences of Alzheimer's disease (AD) and type 2 diabetes (T2D) continuously increase with the aging of world population. Clinical and epidemiological studies indicate that T2D is an important risk factor for AD. However, the mechanisms underlying the linkage of the two disorders are still not fully elucidated. The aim of this study is to explore the molecular mechanisms of their comorbidity and potential drug targets for AD treatment. METHODS We first compiled comprehensive lists of genes associated with AD and T2D, respectively. Then, we investigated the signatures of the shared genes and screened for interactions between the hub genes. Subsequently, we used Autodock Vina to perform molecular docking to predict new drug candidates. Lastly, structure and dynamics of docking results were examined by molecular dynamics simulation to verify drug reliability. RESULTS We obtained 917 AD-associated genes, 631 T2D-associated genes and 175 shared genes between the two disorders for subsequent analyses. Functional analysis revealed that metabolic process, lipid and atherosclerosis, AMPK signaling pathway, insulin resistance, chemokines and cytokines were enriched in the shared genes. In addition, 50 central hub genes were identified, including IL6, TNF, INS, IL1B, AKT1, VEGFA, IL10, TP53, PTGS2, TLR4, and others. Finally, we predicted new drug candidates (verdoheme and stannsoporfin) that could be potentially used for AD treatment. CONCLUSIONS Our study confirmed that there are important shared genes and pathways between AD and T2D, which may provide clues to reveal the molecular mechanism underlying the pathophysiology of the two diseases and help us to discover novel drug candidates for the treatment of AD. The results may also provide clues into identification of new targets and strategies for prevention and therapy of T2D that predisposes to AD.
Collapse
|
3
|
Dec R, Okoń R, Puławski W, Wacławska M, Dzwolak W. Forced amyloidogenic cooperativity of structurally incompatible peptide segments: Fibrillization behavior of highly aggregation-prone A-chain fragment of insulin coupled to all-L, and alternating L/D octaglutamates. Int J Biol Macromol 2022; 223:362-369. [PMID: 36368353 DOI: 10.1016/j.ijbiomac.2022.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
Abstract
Aggregation of proteins into amyloid fibrils is driven by interactions between relatively small amyloidogenic segments. The interplay between aggregation-prone and aggregation-resistant fragments within a single polypeptide chain remains obscure. Here, we examine fibrillization behavior of two chimeric peptides, ACC1-13E8 and ACC1-13E8(L/D), in which the highly amyloidogenic fragment of insulin (ACC1-13) is extended by an octaglutamate segment composed of all-L (E8), or alternating L/D residues (E8(L/D)). As separate entities, ACC1-13 readily forms fibrils with the infrared features of parallel β-sheet while E8 forms antiparallel β-sheets with the distinct infrared characteristics. This contrasts with the profoundly aggregation-resistant E8(L/D), although L/D patterns have been hypothesized as compatible with aggregated α-sheets. ACC1-13E8 and ACC1-13E8(L/D) are found to be equally prone to fibrillization at low pH, or in the presence of Ca2+ ions. Fibrillar states of both ACC1-13E8 and ACC1-13E8(L/D) reveal the infrared features of highly ordered parallel β-sheet without evidence of β2-aggregates (ACC1-13E8) or α-sheets (ACC1-13E8(L/D)). Hence, the preferred structural pattern of ACC1-13 overrides the tendency of E8 to form antiparallel β-sheets and enforces the fibrillar order in E8(L/D). We demonstrate how the powerful amyloid stretch determines the overall amyloid structure forcing non-amyloidogenic fragments to participate in its native amyloid pattern.
Collapse
Affiliation(s)
- Robert Dec
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Róża Okoń
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Wojciech Puławski
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego Street 5, 02-106 Warsaw, Poland
| | - Matylda Wacławska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland; Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska Street 29/37, 01-142 Warsaw, Poland.
| |
Collapse
|
4
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
5
|
Hayward S, Milner-White EJ. Determination of amino acids that favour the α L region using Ramachandran propensity plots. Implications for α-sheet as the possible amyloid intermediate. J Struct Biol 2021; 213:107738. [PMID: 33838226 DOI: 10.1016/j.jsb.2021.107738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/28/2022]
Abstract
In amyloid diseases an insoluble amyloid fibril forms via a soluble oligomeric intermediate. It is this intermediate that mediates toxicity and it has been suggested, somewhat controversially, that it has the α-sheet structure. Nests and α-strands are similar peptide motifs in that alternate residues lie in the αR and γL regions of the Ramachandran plot for nests, or αR and αL regions for α-strands. In nests a concavity is formed by the main chain NH atoms whereas in α-strands the main chain is almost straight. Using "Ramachandran propensity plots" to focus on the αL/γL region, it is shown that glycine favours γL (82% of amino acids are glycine), but disfavours αL (3% are glycine). Most charged and polar amino acids favour αL with asparagine having by far the highest propensity. Thus, glycine favours nests but, contrary to common expectation, should not favour α-sheet. By contrast most charged or polar amino acids should favour α-sheet by their propensity for the αL conformation, which is more discriminating amongst amino acids than the αR conformation. Thus, these results suggest the composition of sequences that favour α-sheet formation and point towards effective prediction of α-sheet from sequence.
Collapse
Affiliation(s)
- Steven Hayward
- Computational Biology Laboratory, School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - E James Milner-White
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
6
|
Bromley D, Daggett V. Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure. Protein Sci 2020; 29:1983-1999. [PMID: 32715544 DOI: 10.1002/pro.3921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The p53 protein is a commonly studied cancer target because of its role in tumor suppression. Unfortunately, it is susceptible to mutation-associated loss of function; approximately 50% of cancers are associated with mutations to p53, the majority of which are located in the central DNA-binding domain. Here, we report molecular dynamics simulations of wild-type (WT) p53 and 20 different mutants, including a stabilized pseudo-WT mutant. Our findings indicate that p53 mutants tend to exacerbate latent structural-disruption tendencies, or vulnerabilities, already present in the WT protein, suggesting that it may be possible to develop cancer therapies by targeting a relatively small set of structural-disruption motifs rather than a multitude of effects specific to each mutant. In addition, α-sheet secondary structure formed in almost all of the proteins. α-Sheet has been hypothesized and recently demonstrated to play a role in amyloidogenesis, and its presence in the reported p53 simulations coincides with the recent re-consideration of cancer as an amyloid disease.
Collapse
Affiliation(s)
- Dennis Bromley
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
| | - Valerie Daggett
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Wang R, Yang X, Cui L, Yin H, Xu S. Gels of Amyloid Fibers. Biomolecules 2019; 9:biom9060210. [PMID: 31151252 PMCID: PMC6628346 DOI: 10.3390/biom9060210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
Protein self-assembly and formation of amyloid fibers is an early event of numerous human diseases. Continuous aggregation of amyloid fibers in vitro produces biogels, which led us to suspect that amyloid plaques and neurofibrillary tangles in Alzheimer’s disease are of biogels in nature. We applied atomic force microscopy, size exclusion chromatography, and differential scanning calorimetry to elucidate the gel’s structure, kinetics of gel formation, and melting point. We found that (1) lysozyme gelation occurs when the protein concentration is above 5 mg/mL; (2) nonfibrous protein concentration decreases and plateaus after three days of gel synthesis reaction; (3) colloidal lysozyme aggregates are detectable by both atomic force microscopy (AFM) and fast protein liquid chromatography (FPLC); (4) the gels are a three-dimensional (3D) network crosslinked by fibers coiling around each other; (5) the gels have a high melting point at around around 110 °C, which is weakly dependent on protein concentration; (6) the gels are conductive under an electric field, and (7) they form faster in the presence than in the absence of salt in the reaction buffer. The potential role of the gels formed by amyloid fibers in amyloidosis, particularly in Alzheimer’s disease was thoroughly discussed, as gels with increased viscosity, are known to restrict bulk flow and then circulation of ions and molecules.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Biomedical & Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
| | - Xiaojing Yang
- Department of Biomedical & Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
| | - Lingwen Cui
- Department of Biomedical & Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
| | - Hang Yin
- Department of Biomedical & Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
| | - Shaohua Xu
- Department of Biomedical & Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
| |
Collapse
|
8
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Ushikubo H, Tanimoto Y, Abe K, Asakawa T, Kan T, Akaishi T. 3,3',4',5'-Tetrahydroxyflavone induces formation of large aggregates of amyloid β protein. Biol Pharm Bull 2015; 37:748-54. [PMID: 24789998 DOI: 10.1248/bpb.b13-00709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloid β protein (Aβ) self-assembles into insoluble fibrils, and forms the senile plaques associated with Alzheimer's disease. 3,3',4',5'-Tetrahydroxyflavone, a synthetic analogue of the natural flavonoid fisetin, has been found to potently inhibit Aβ fibril formation. In the present study, we investigated how inhibition of Aβ fibril formation by this flavonoid affects Aβ conformation and neurotoxicity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of Aβ1-42 (20 µM) incubated with or without 3,3',4',5'-tetrahydroxyflavone demonstrated that 3,3',4',5'-tetrahydroxyflavone (100 µM) rapidly caused formation of atypical Aβ conformers, which appeared as a very broad, smear-like band in the high molecular weight region and were distinguishable from soluble Aβ oligomers or mature Aβ fibrils. Transmission electron microscopy (TEM) revealed that large spherical Aβ aggregates were preferentially formed in the presence of 3,3',4',5'-tetrahydroxyflavone. The SDS-resistant, smear-like band on SDS-PAGE and the large spherical aggregates in TEM both disappeared after heat treatment (100°C, 10 min). Furthermore, a neurotoxicity assay with cultured rat hippocampal neurons demonstrated that Aβ incubated with 3,3',4',5'-tetrahydroxyflavone was significantly less toxic than Aβ incubated without the flavonoid. These results suggest that the newly synthesized fisetin analogue 3,3',4',5'-tetrahydroxyflavone directly produces atypical, large Aβ aggregates and reduces Aβ toxicity.
Collapse
Affiliation(s)
- Hiroko Ushikubo
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University
| | | | | | | | | | | |
Collapse
|
10
|
Woodard D, Bell D, Tipton D, Durrance S, Cole L, Li B, Xu S. Gel formation in protein amyloid aggregation: a physical mechanism for cytotoxicity. PLoS One 2014; 9:e94789. [PMID: 24740416 PMCID: PMC3989237 DOI: 10.1371/journal.pone.0094789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/19/2014] [Indexed: 12/21/2022] Open
Abstract
Amyloid fibers are associated with disease but have little chemical reactivity. We investigated the formation and structure of amyloids to identify potential mechanisms for their pathogenic effects. We incubated lysozyme 20 mg/ml at 55C and pH 2.5 in a glycine-HCl buffer and prepared slides on mica substrates for examination by atomic force microscopy. Structures observed early in the aggregation process included monomers, small colloidal aggregates, and amyloid fibers. Amyloid fibers were observed to further self-assemble by two mechanisms. Two or more fibers may merge together laterally to form a single fiber bundle, usually in the form of a helix. Alternatively, fibers may become bound at points where they cross, ultimately forming an apparently irreversible macromolecular network. As the fibers assemble into a continuous network, the colloidal suspension undergoes a transition from a Newtonian fluid into a viscoelastic gel. Addition of salt did not affect fiber formation but inhibits transition of fibers from linear to helical conformation, and accelerates gel formation. Based on our observations, we considered the effects of gel formation on biological transport. Analysis of network geometry indicates that amyloid gels will have negligible effects on diffusion of small molecules, but they prevent movement of colloidal-sized structures. Consequently gel formation within neurons could completely block movement of transport vesicles in neuronal processes. Forced convection of extracellular fluid is essential for the transport of nutrients and metabolic wastes in the brain. Amyloid gel in the extracellular space can essentially halt this convection because of its low permeability. These effects may provide a physical mechanism for the cytotoxicity of chemically inactive amyloid fibers in neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel Woodard
- InnoMedic Health Applications, Inc., Kennedy Space Center, Florida, United States of America
- * E-mail:
| | - Dylan Bell
- Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - David Tipton
- Aerospace Medicine and Occupational Health Branch, Kennedy Space Center, Florida, United States of America
| | - Samuel Durrance
- Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - Lisa Cole
- Institute of Human Nutrition, Columbia University, New York, New York, United States of America
| | - Bin Li
- Biological Sciences Department, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - Shaohua Xu
- Biological Sciences Department, Florida Institute of Technology, Melbourne, Florida, United States of America
| |
Collapse
|
11
|
Molecular Dynamics Studies on Amyloidogenic Proteins. COMPUTATIONAL METHODS TO STUDY THE STRUCTURE AND DYNAMICS OF BIOMOLECULES AND BIOMOLECULAR PROCESSES 2014. [DOI: 10.1007/978-3-642-28554-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Hu L, Cui W, He Z, Shi X, Feng K, Ma B, Cai YD. Cooperativity among short amyloid stretches in long amyloidogenic sequences. PLoS One 2012; 7:e39369. [PMID: 22761773 PMCID: PMC3382238 DOI: 10.1371/journal.pone.0039369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 05/18/2012] [Indexed: 12/29/2022] Open
Abstract
Amyloid fibrillar aggregates of polypeptides are associated with many neurodegenerative diseases. Short peptide segments in protein sequences may trigger aggregation. Identifying these stretches and examining their behavior in longer protein segments is critical for understanding these diseases and obtaining potential therapies. In this study, we combined machine learning and structure-based energy evaluation to examine and predict amyloidogenic segments. Our feature selection method discovered that windows consisting of long amino acid segments of ~30 residues, instead of the commonly used short hexapeptides, provided the highest accuracy. Weighted contributions of an amino acid at each position in a 27 residue window revealed three cooperative regions of short stretch, resemble the β-strand-turn-β-strand motif in A-βpeptide amyloid and β-solenoid structure of HET-s(218-289) prion (C). Using an in-house energy evaluation algorithm, the interaction energy between two short stretches in long segment is computed and incorporated as an additional feature. The algorithm successfully predicted and classified amyloid segments with an overall accuracy of 75%. Our study revealed that genome-wide amyloid segments are not only dependent on short high propensity stretches, but also on nearby residues.
Collapse
Affiliation(s)
- Lele Hu
- Institute of Systems Biology, Shanghai University, Shanghai, People’s Republic of China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, People’s Republic of China
| | - Weiren Cui
- CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhisong He
- CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Xiaohe Shi
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Kaiyan Feng
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Buyong Ma
- Basic Science Program, SAIC – Frederick, Center for Cancer Research Nanobiology Program, National Cancer Institute-Fredeick, National Institute of Health, Frederick, Maryland, United States of America
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Di Carlo M, Giacomazza D, San Biagio PL. Alzheimer's disease: biological aspects, therapeutic perspectives and diagnostic tools. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:244102. [PMID: 22595372 DOI: 10.1088/0953-8984/24/24/244102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Dementia is an irreversible brain disorder that seriously affects a person's ability to carry out daily activities. It is characterized by loss of cognitive functioning and behavioral abilities, to such an extent that it interferes with the daily life and activities of the affected patients. Although it is still unknown how the disease process begins, it seems that brain damage starts a decade or more before problems become evident. Scientific data seem to indicate that changes in the generation or the degradation of the amyloid-b peptide (Aβ) lead to the formation of aggregated structures that are the triggering molecular events in the pathogenic cascade of AD. This review summarizes some characteristic features of Aβ misfolding and aggregation and how cell damage and death mechanisms are induced by these supramolecular and toxic structures. Further, some interventions for the early diagnosis of AD are described and in the last part the potential therapeutic strategies adoptable to slow down, or better block, the progression of the pathology are reported.
Collapse
Affiliation(s)
- M Di Carlo
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM), CNR, Palermo, Italy.
| | | | | |
Collapse
|
14
|
Roberti MJ, Fölling J, Celej MS, Bossi M, Jovin TM, Jares-Erijman EA. Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy. Biophys J 2012; 102:1598-607. [PMID: 22500760 DOI: 10.1016/j.bpj.2012.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 02/04/2023] Open
Abstract
The morphological features of α-synuclein (AS) amyloid aggregation in vitro and in cells were elucidated at the nanoscale by far-field subdiffraction fluorescence localization microscopy. Labeling AS with rhodamine spiroamide probes allowed us to image AS fibrillar structures by fluorescence stochastic nanoscopy with an enhanced resolution at least 10-fold higher than that achieved with conventional, diffraction-limited techniques. The implementation of dual-color detection, combined with atomic force microscopy, revealed the propagation of individual fibrils in vitro. In cells, labeled protein appeared as amyloid aggregates of spheroidal morphology and subdiffraction sizes compatible with in vitro supramolecular intermediates perceived independently by atomic force microscopy and cryo-electron tomography. We estimated the number of monomeric protein units present in these minute structures. This approach is ideally suited for the investigation of the molecular mechanisms of amyloid formation both in vitro and in the cellular milieu.
Collapse
Affiliation(s)
- M Julia Roberti
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
15
|
Fauerbach JA, Yushchenko DA, Shahmoradian SH, Chiu W, Jovin TM, Jares-Erijman EA. Supramolecular non-amyloid intermediates in the early stages of α-synuclein aggregation. Biophys J 2012; 102:1127-36. [PMID: 22404935 DOI: 10.1016/j.bpj.2012.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/05/2012] [Accepted: 01/26/2012] [Indexed: 10/28/2022] Open
Abstract
The aggregation of α-synuclein is associated with progression of Parkinson's disease. We have identified submicrometer supramolecular structures that mediate the early stages of the overall mechanism. The sequence of structural transformations between metastable intermediates were captured and characterized by atomic force microscopy guided by a fluorescent probe sensitive to preamyloid species. A novel ~0.3-0.6 μm molecular assembly, denoted the acuna, nucleates, expands, and liberates fibers with distinctive segmentation and a filamentous fuzzy fringe. These fuzzy fibers serve as precursors of mature amyloid fibrils. Cryo-electron tomography resolved the acuna inner structure as a scaffold of highly condensed colloidal masses interlinked by thin beaded threads, which were perceived as fuzziness by atomic force microscopy. On the basis of the combined data, we propose a sequential mechanism comprising molecular, colloidal, and fibrillar stages linked by reactions with disparate temperature dependencies and distinct supramolecular forms. We anticipate novel diagnostic and therapeutic approaches to Parkinson's and related neurodegenerative diseases based on these new insights into the aggregation mechanism of α-synuclein and intermediates, some of which may act to cause and/or reinforce neurotoxicity.
Collapse
Affiliation(s)
- Jonathan A Fauerbach
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CIHIDECAR CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
16
|
Carrotta R, Canale C, Diaspro A, Trapani A, Biagio PLS, Bulone D. Inhibiting effect of α(s1)-casein on Aβ(1-40) fibrillogenesis. Biochim Biophys Acta Gen Subj 2011; 1820:124-32. [PMID: 22155633 DOI: 10.1016/j.bbagen.2011.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 01/16/2023]
Abstract
BACKGROUND α(s1)-Casein is one of the four types of caseins, the largest protein component of bovine milk. The lack of a compact folded conformation and the capability to form micelles suggest a relationship of α(s1)-casein with the class of the intrinsically disordered (or natively unfolded) proteins. These proteins are known to exert a stabilizing activity on biomolecules through specific interaction with hydrophobic surfaces. In the present work we focused on the effect of α(s1)-casein on the fibrillogenesis of 1-40 β-amyloid peptide, involved in Alzheimer's disease. METHODS The aggregation kinetics of β-peptide in presence and absence of α(s1)-casein was followed under shear at 37°C by recording the Thioflavine fluorescence, usually taken as an indicator of fibers formation. Measurements of Static and Dynamic Light Scattering, Circular Dichroism, and AFM imaging were done to reveal the details of α(s1)-casein-Aβ(1-40) interaction. RESULTS AND DISCUSSIONS α(s1)-Casein addition sizably increases the lag-time of the nucleation phase and slows down the entire fibrillization process. α(s1)-Casein sequesters the amyloid peptide on its surface thus exerting a chaperone-like activity by means a colloidal inhibition mechanism. GENERAL SIGNIFICANCE Insights on the working mechanism of natural chaperones in preventing or controlling the amyloid aggregation.
Collapse
Affiliation(s)
- R Carrotta
- Inst. of Biophysics, National Research Council, Via U. La Malfa 153, I-90146, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Hayward S, James Milner-White E. Simulation of the β- to α-sheet transition results in a twisted sheet for antiparallel and an α-nanotube for parallel strands: Implications for amyloid formation. Proteins 2011; 79:3193-207. [DOI: 10.1002/prot.23154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/19/2011] [Accepted: 07/27/2011] [Indexed: 01/16/2023]
|
18
|
Paulite M, Fakhraai Z, Li ITS, Gunari N, Tanur AE, Walker GC. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscopy. J Am Chem Soc 2011; 133:7376-83. [PMID: 21524071 DOI: 10.1021/ja109316p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid fibril diseases are characterized by the abnormal production of aggregated proteins and are associated with many types of neuro- and physically degenerative diseases. X-ray diffraction techniques, solid-state magic-angle spinning NMR spectroscopy, circular dichroism (CD) spectroscopy, and transmission electron microscopy studies have been utilized to detect and examine the chemical, electronic, material, and structural properties of amyloid fibrils at up to angstrom spatial resolution. However, X-ray diffraction studies require crystals of the fibril to be analyzed, while other techniques can only probe the bulk solution or solid samples. In the work reported here, apertureless near-field scanning infrared microscopy (ANSIM) was used to probe the secondary structure of individual amyloid fibrils made from an in vitro solution. Simultaneous topographic and infrared images of individual amyloid fibrils synthesized from the #21-31 peptide fragment of β(2)-microglobulin were acquired. Using this technique, IR spectra of the amyloid fibrils were obtained with a spatial resolution of less than 30 nm. It is observed that the experimental scattered field spectrum correlates strongly with that calculated using the far-field absorption spectrum. The near-field images of the amyloid fibrils exhibit much lower scattering of the IR radiation at approximately 1630 cm(-1). In addition, the near-field images also indicate that composition and/or structural variations among individual amyloid fibrils were present.
Collapse
Affiliation(s)
- Melissa Paulite
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | | | | | | | | | | |
Collapse
|
19
|
Fiumara F, Fioriti L, Kandel ER, Hendrickson WA. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins. Cell 2011; 143:1121-35. [PMID: 21183075 DOI: 10.1016/j.cell.2010.11.042] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 08/23/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022]
Abstract
The functional switch of glutamine/asparagine (Q/N)-rich prions and the neurotoxicity of polyQ-expanded proteins involve complex aggregation-prone structural transitions, commonly presumed to be forming β sheets. By analyzing sequences of interaction partners of these proteins, we discovered a recurrent presence of coiled-coil domains both in the partners and in segments that flank or overlap Q/N-rich and polyQ domains. Since coiled coils can mediate protein interactions and multimerization, we studied their possible involvement in Q/N-rich and polyQ aggregations. Using circular dichroism and chemical crosslinking, we found that Q/N-rich and polyQ peptides form α-helical coiled coils in vitro and assemble into multimers. Using structure-guided mutagenesis, we found that coiled-coil domains modulate in vivo properties of two Q/N-rich prions and polyQ-expanded huntingtin. Mutations that disrupt coiled coils impair aggregation and activity, whereas mutations that enhance coiled-coil propensity promote aggregation. These findings support a coiled-coil model for the functional switch of Q/N-rich prions and for the pathogenesis of polyQ-expansion diseases.
Collapse
Affiliation(s)
- Ferdinando Fiumara
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Unfolded protein response (UPR) is a stress response to increased levels of unfolded proteins in the endoplasmic reticulum (ER). To deal with this stress, all eukaryotic cells share a well-conserved strategy--the upregulation of chaperons and proteases to facilitate protein folding and to degrade the misfolded proteins. For metazoans, however, an additional and seemingly redundant strategy has been evolved--translation attenuation (TA) of proteins targeted to the ER via the protein kinase PERK pathway. PERK is essential in secretory cells, such as the pancreatic β-cells, but not in non-secretory cell types. We have recently developed a mathematical model of UPR, focusing on the interplay and synergy between the TA arm and the conserved Ire1 arm of the UPR. The model showed that the TA mechanism is beneficial in highly fluctuating environment, for example, in the case where the ER stress changes frequently. Under highly variable levels of ER stress, tight regulation of the ER load by TA avoids excess amount of chaperons and proteases being produced. The model also showed that TA is of greater importance when there is a large flux of proteins through the ER. In this study, we further expand our model to investigate different types of ER stress and different temporal profiles of the stress. We found that TA is more desirable in dealing with the translation stress, for example, prolonged stimulation of proinsulin biosynthesis, than the chemical stress.
Collapse
Affiliation(s)
- A Trusina
- Center for Models of Life, Niels Bohr Institute, Copenhagen, Denmark
| | | |
Collapse
|
21
|
Xu S, Brunden KR, Trojanowski JQ, Lee VMY. Characterization of tau fibrillization in vitro. Alzheimers Dement 2010; 6:110-7. [PMID: 20298971 PMCID: PMC2842604 DOI: 10.1016/j.jalz.2009.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 06/02/2009] [Accepted: 06/23/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND The assembly of tau proteins into paired helical filaments, the building blocks of neurofibrillary tangles, is linked to neurodegeneration in Alzheimer's disease and related tauopathies. A greater understanding of this assembly process could identify targets for the discovery of drugs to treat Alzheimer's disease and related disorders. By using recombinant human tau, we have delineated events leading to the conversion of normal soluble tau into tau fibrils. METHODS Atomic force microscopy and transmission electron microscopy methodologies were used to determine the structure of tau assemblies that formed when soluble tau was incubated with heparin for increasing lengths of time. RESULTS Tau initially oligomerizes into spherical nucleation units of 18- to 21-nm diameter that appear to assemble linearly into nascent fibrils. Among the earliest tau fibrils are species that resemble a string of beads formed by linearly aligned spheres that with time seem to coalesce to form straight and twisted ribbon-like filaments, as well as paired helical filaments similar to those found in human tauopathies. An analysis of fibril cross sections at later incubation times revealed three fundamental axial structural features. CONCLUSIONS By monitoring tau fibrillization, we showed that different tau filament morphologies coexist. Temporal changes in the predominant tau structural species suggest that tau fibrillization involves the generation of structural intermediates, resulting in the formation of tau fibrils with verisimilitude to their authentic human counterparts.
Collapse
Affiliation(s)
| | - Kurt R. Brunden
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - John Q. Trojanowski
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Virginia M.-Y. Lee
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
22
|
Abstract
As proteins aggregate to form amyloid fibers, their secondary structure changes from its native form to cross-beta-sheet. Whether this conformational change is essential for fiber formation remains unknown. Evidence from atomic force microscopy and transmission electron microscopy suggests that aggregation occurs in two stages. Initially, protein monomers aggregate into colloidal spheres; however, they stop growing after reaching a uniform diameter. The spheres then join together to form linear chains which evolve into mature fibers. In this paper, we apply, for the first time, the DLVO theory, formulated by Derjaguin, Landau, Verwey and Overbeek for the quantitative analysis of colloidal interactions, to elucidate the two stages of fiber formation. We find that, as like-charged protein molecules aggregate, the total charge of the colloidal sphere increases until it repels additional monomers from coming close enough to bind, limiting the size of the colloidal particle. Energy analysis and X-ray diffraction data suggest that aggregation of multiple protein monomers onto the growing colloid drives their misfolding into hairpin loops. These loops stack together to form a U-shaped trough which initially adopts a cross-alpha-sheet structure with a strong dipole moment. Driven by charge-dipole interactions, the colloidal spheres aggregate into a linear chain. The peptide strands are oriented perpendicular to the direction of the dipole of each sphere and, therefore, are also perpendicular to the axis of the linear chain as it forms and evolves into the mature fiber. The cross alpha-sheet then evolves into the thermodynamically more stable cross beta-sheet.
Collapse
Affiliation(s)
- Shaohua Xu
- Department of Biological Sciences and Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
| |
Collapse
|
23
|
Hamill AC, Lee CT. Photocontrol of β-Amyloid Peptide (1−40) Fibril Growth in the Presence of a Photosurfactant. J Phys Chem B 2009; 113:6164-72. [DOI: 10.1021/jp8080113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea C. Hamill
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211
| | - C. Ted Lee
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211
| |
Collapse
|
24
|
TAMURA H, HASEGAWA K. A review for recent advances in AA amyloid research and therapeutic approach to AA amyloidosis complicating rheumatoid arthritis. ACTA ACUST UNITED AC 2009; 32:35-42. [DOI: 10.2177/jsci.32.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hiroaki TAMURA
- Department of Internal Medicine, Rheumatic diseases, Kin-ikyo-chuo Hospital
| | - Kiminori HASEGAWA
- Department of Internal Medicine, Rheumatic diseases, Kin-ikyo-chuo Hospital
| |
Collapse
|
25
|
Rationalizing translation attenuation in the network architecture of the unfolded protein response. Proc Natl Acad Sci U S A 2008; 105:20280-5. [PMID: 19075238 DOI: 10.1073/pnas.0803476105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased levels of unfolded proteins in the endoplasmic reticulum (ER) of all eukaryotes trigger the unfolded protein response (UPR). Lower eukaryotes solely use an ancient UPR mechanism, whereby they up-regulate ER-resident chaperones and other enzymatic activities to augment protein folding and enhance degradation of misfolded proteins. Metazoans have evolved an additional mechanism through which they attenuate translation of secretory pathway proteins by activating the ER protein kinase PERK. In mammalian professional secretory cells such as insulin-producing pancreatic beta-cells, PERK is highly abundant and crucial for proper functioning of the secretory pathway. Through a modeling approach, we propose explanations for why a translation attenuation (TA) mechanism may be critical for beta-cells, but is less important in nonsecretory cells and unnecessary in lower eukaryotes such as yeast. We compared the performance of a model UPR, both with and without a TA mechanism, by monitoring 2 variables: (i) the maximal increase in ER unfolded proteins during a response, and (ii) the accumulation of chaperones between 2 consecutive pulses of stress. We found that a TA mechanism is important for minimizing these 2 variables when the ER is repeatedly subjected to transient unfolded protein stresses and when it sustains a large flux of secretory pathway proteins which are both conditions encountered physiologically by pancreatic beta-cells. Low expression of PERK in nonsecretory cells, and its absence in yeast, can be rationalized by lower trafficking of secretory proteins through their ERs.
Collapse
|
26
|
Suchanova B, Tuma R. Folding and assembly of large macromolecular complexes monitored by hydrogen-deuterium exchange and mass spectrometry. Microb Cell Fact 2008; 7:12. [PMID: 18394161 PMCID: PMC2365927 DOI: 10.1186/1475-2859-7-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/04/2008] [Indexed: 11/26/2022] Open
Abstract
Recent advances in protein mass spectrometry (MS) have enabled determinations of hydrogen deuterium exchange (HDX) in large macromolecular complexes. HDX-MS became a valuable tool to follow protein folding, assembly and aggregation. The methodology has a wide range of applications in biotechnology ranging from quality control for over-expressed proteins and their complexes to screening of potential ligands and inhibitors. This review provides an introduction to protein folding and assembly followed by the principles of HDX and MS detection, and concludes with selected examples of applications that might be of interest to the biotechnology community.
Collapse
|
27
|
Congdon EE, Kim S, Bonchak J, Songrug T, Matzavinos A, Kuret J. Nucleation-dependent tau filament formation: the importance of dimerization and an estimation of elementary rate constants. J Biol Chem 2008; 283:13806-16. [PMID: 18359772 DOI: 10.1074/jbc.m800247200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Filamentous inclusions composed of the microtubule-associated protein tau are found in Alzheimer disease and other tauopathic neurodegenerative diseases, but the mechanisms underlying their formation from full-length protein monomer under physiological conditions are unclear. To address this issue, the fibrillization of recombinant full-length four-repeat human tau was examined in vitro as a function of time and submicromolar tau concentrations using electron microscopy assay methods and a small-molecule inducer of aggregation, thiazine red. Data were then fit to a simple homogeneous nucleation model with rate constant constraints established from filament dissociation rate, critical concentration, and mass-per-unit length measurements. The model was then tested by comparing the predicted time-dependent evolution of length distributions to experimental data. Results indicated that once assembly-competent conformations were attained, the rate-limiting step in the fibrillization pathway was tau dimer formation. Filament elongation then proceeded by addition of tau monomers to nascent filament ends. Filaments isolated at reaction plateau contained approximately 2 tau protomers/beta-strand spacing on the basis of mass-per-unit length measurements. The model suggests four key steps in the aggregation pathway that must be surmounted for tau filaments to form in disease.
Collapse
Affiliation(s)
- Erin E Congdon
- Center for Molecular Neurobiology, Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|