1
|
Nickerson JA, Momen-Heravi F. Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin. Nucleus 2024; 15:2350180. [PMID: 38773934 PMCID: PMC11123517 DOI: 10.1080/19491034.2024.2350180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. Non-coding RNA transcripts include a very large number of long noncoding RNAs (lncRNAs). A growing number of identified lncRNAs operate in cellular stress responses, for example in response to hypoxia, genotoxic stress, and oxidative stress. Additionally, lncRNA plays important roles in epigenetic mechanisms operating at chromatin and in maintaining chromatin architecture. Here, we address three lncRNA topics that have had significant recent advances. The first is an emerging role for many lncRNAs in cellular stress responses. The second is the development of high throughput screening assays to develop causal relationships between lncRNAs across the genome with cellular functions. Finally, we turn to recent advances in understanding the role of lncRNAs in regulating chromatin architecture and epigenetics, advances that build on some of the earliest work linking RNA to chromatin architecture.
Collapse
Affiliation(s)
- Jeffrey A Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Fatemeh Momen-Heravi
- College of Dental Medicine, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Liao YW, Yu CC, Hsieh CW, Chao SC, Hsieh PL. Aberrantly downregulated FENDRR by arecoline elevates ROS and myofibroblast activation via mitigating the miR-214/MFN2 axis. Int J Biol Macromol 2024; 264:130504. [PMID: 38442830 DOI: 10.1016/j.ijbiomac.2024.130504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
Long non-coding RNA FENDRR possesses both anti-fibrotic and anti-cancer properties, but its significance in the development of premalignant oral submucous fibrosis (OSF) remains unclear. Here, we showed that FENDRR was downregulated in OSF specimens and fibrotic buccal mucosal fibroblasts (fBMFs), and overexpression of FENDRR mitigated various myofibroblasts hallmarks, and vice versa. In the course of investigating the mechanism underlying the implication of FENDRR in myofibroblast transdifferentiation, we found that FENDRR can directly bind to miR-214 and exhibit its suppressive effect on myofibroblast activation via titrating miR-214. Moreover, we showed that mitofusin 2 (MFN2), a protein that is crucial to the fusion of mitochondria, was a direct target of miR-214. Our data suggested that FENDRR was positively correlated with MFN2 and MFN2 was required for the inhibitory property of FENDRR pertaining to myofibroblast phenotypes. Additionally, our results showed that the FENDRR/miR-214 axis participated in the arecoline-induced reactive oxygen species (ROS) accumulation and myofibroblast transdifferentiation. Building on these results, we concluded that the aberrant downregulation of FENDRR in OSF may be associated with chronic exposure to arecoline, leading to upregulation of ROS and myofibroblast activation via the miR-214-mediated suppression of MFN2.
Collapse
Affiliation(s)
- Yi-Wen Liao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shih-Chi Chao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
3
|
Chi K, Liu J, Li X, Wang H, Li Y, Liu Q, Zhou Y, Ge Y. Biomarkers of heart failure: advances in omics studies. Mol Omics 2024; 20:169-183. [PMID: 38224222 DOI: 10.1039/d3mo00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Heart failure is a complex syndrome characterized by progressive circulatory dysfunction, manifesting clinically as pulmonary and systemic venous congestion, alongside inadequate tissue perfusion. The early identification of HF, particularly at the mild and moderate stages (stages B and C), presents a clinical challenge due to the overlap of signs, symptoms, and natriuretic peptide levels with other cardiorespiratory pathologies. Nonetheless, early detection coupled with timely pharmacological intervention is imperative for enhancing patient outcomes. Advances in high-throughput omics technologies have enabled researchers to analyze patient-derived biofluids and tissues, discovering biomarkers that are sensitive and specific for HF diagnosis. Due to the diversity of HF etiology, it is insufficient to study the diagnostic data of early HF using a single omics technology. This study reviewed the latest progress in genomics, transcriptomics, proteomics, and metabolomics for the identification of HF biomarkers, offering novel insights into the early clinical diagnosis of HF. However, the validity of biomarkers depends on the disease status, intervention time, genetic diversity and comorbidities of the subjects. Moreover, biomarkers lack generalizability in different clinical settings. Hence, it is imperative to conduct multi-center, large-scale and standardized clinical trials to enhance the diagnostic accuracy and utility of HF biomarkers.
Collapse
Affiliation(s)
- Kuo Chi
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Jing Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Xinghua Li
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - He Wang
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yanliang Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yabin Zhou
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yuan Ge
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Jalink EA, Schonk AW, Boon RA, Juni RP. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 10:1300375. [PMID: 38259314 PMCID: PMC10800550 DOI: 10.3389/fcvm.2023.1300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.
Collapse
Affiliation(s)
- Elisabeth A. Jalink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Amber W. Schonk
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Frankfurt Rhein/Main, Frankfurt, Germany
| | - Rio P. Juni
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| |
Collapse
|
5
|
Gao X, Su G, Chai M, Shen M, Hu Z, Chen W, Gao J, Li R, Ma T, An Y, Zhang Z. Research progress on mechanisms of ischemic stroke: Regulatory pathways involving Microglia. Neurochem Int 2024; 172:105656. [PMID: 38081419 DOI: 10.1016/j.neuint.2023.105656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Microglia, as the intrinsic immune cells in the brain, are activated following ischemic stroke. Activated microglia participate in the pathological processes after stroke through polarization, autophagy, phagocytosis, pyroptosis, ferroptosis, apoptosis, and necrosis, thereby influencing the injury and repair following stroke. It has been established that polarized M1 and M2 microglia exhibit pro-inflammatory and anti-inflammatory effects, respectively. Autophagy and phagocytosis in microglia following ischemia are dynamic processes, where moderate levels promote cell survival, while excessive responses may exacerbate neurofunctional deficits following stroke. Additionally, pyroptosis and ferroptosis in microglia after ischemic stroke contribute to the release of harmful cytokines, further aggravating the damage to brain tissue due to ischemia. This article discusses the different functional states of microglia in ischemic stroke research, highlighting current research trends and gaps, and provides insights and guidance for further study of ischemic stroke.
Collapse
Affiliation(s)
- Xin Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Minghui Shen
- Medical Laboratories, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Zhenzhen Hu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Ruixin Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Tianfei Ma
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Yang An
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.
| |
Collapse
|