1
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Caroli AP, Mansoldo FRP, Cardoso VS, Lage CLS, Carmo FL, Supuran CT, Beatriz Vermelho A. Are patents important indicators of innovation for Chagas disease treatment? Expert Opin Ther Pat 2023; 33:193-209. [PMID: 36786067 DOI: 10.1080/13543776.2023.2176219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Chagas disease is a neglected, endemic disease in 21 countries, spreading to non-endemic countries too. Like other neglected diseases affecting primarily low- and middle-income countries, low investment and the absence of new chemical entities from the industry occurred. Increased knowledge about the parasite, drug targets, and vector control has been observed, but this was not translated into new drugs. The partnerships of pharmaceutical companies with academies and consolidated networks to increment the new drugs and treatment research in Chagas disease are shown. The current review analyzes in detail the patents dealing with compounds candidates for new drugs and treatment. The patent search was performed using Orbit Intelligence® software in the 2001-2021 period. AREAS COVERED The author focused specifically on patents for the treatment, the new candidates disclosed in the patents, and the barriers to innovation. EXPERT OPINION Patents in Chagas disease have been increasing in the last years, although they do not bring new compounds to an effective treatment.
Collapse
Affiliation(s)
- Andrea Pestana Caroli
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Felipe R P Mansoldo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Veronica S Cardoso
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Celso Luiz Salgueiro Lage
- National Institute of Intellectual Property (INPI), Graduate and Research Division, Rio de Janeiro-RJ, Brazil
| | - Flavia L Carmo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, LEMM - Molecular Microbial Ecology Laboratory
| | - Claudiu T Supuran
- NEUROFARBA Department Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Alane Beatriz Vermelho
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Pharmaceutical agents for the treatment of Chagas disease: patenting trends in 2016-2021 period. Pharm Pat Anal 2022; 11:97-110. [PMID: 35861035 DOI: 10.4155/ppa-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
American trypanosomiasis is a neglected tropical disease and an endemic problem in 21 Latin American countries, whose treatment relies on only two US FDA-approved drugs: benznidazole and nifurtimox. Patent literature reveals vital information on new trends in therapies for various diseases, including Chagas disease. The authors used the patent databases of the world's major patent offices to generate an overview of patent trends related to the treatment of Chagas disease. A total of 50 patent families were collected and grouped as 'small molecules', 'pharmaceutical compositions of known compounds' and vaccines. From the results and interpretation, it can be concluded that the treatment of Chagas disease receives little attention in the field of patents and that the upward trend is minimal.
Collapse
|
4
|
Alevi KCC, de Oliveira J, Garcia ACC, Cristal DC, Delgado LMG, de Freitas Bittinelli I, dos Reis YV, Ravazi A, de Oliveira ABB, Galvão C, de Azeredo-Oliveira MTV, Madeira FF. Triatoma rosai sp. nov. (Hemiptera, Triatominae): A New Species of Argentinian Chagas Disease Vector Described Based on Integrative Taxonomy. INSECTS 2020; 11:insects11120830. [PMID: 33255910 PMCID: PMC7759825 DOI: 10.3390/insects11120830] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023]
Abstract
Simple Summary Although all triatomines are potential vectors of Chagas' disease, there are species with greater or lesser vectorial importance. Therefore, the correct identification of triatomines species is essential for the vector control programs. In general, triatomines are identified by external morphological characters. However, some species are very similar or even morphologically identical, being important the use of complementary analyses for the correct identification of species. For this reason, this study focused on the use of morphological, morphometric, molecular data, and experimental crosses to describe Triatoma rosai sp. nov., a new species of Argentinian Chagas disease vector. Significant morphological and morphometric differences, associated with phylogenetic support and high mortality rate of the hybrids made it possible to confirm the specific status of T. rosai sp. nov., emphasizing the importance of integrative analyses for the taxonomy of triatomines. Abstract Chagas disease is the most prevalent neglected tropical disease in the Americas and makes an important contribution to morbidity and mortality rates in countries where it is endemic since 30 to 40% of patients develop cardiac diseases, gastrointestinal disorders, or both. In this paper, a new species of the genus Triatoma is described based on specimens collected in the Department San Miguel, Province of Corrientes, Argentina. Triatoma rosai sp. nov. is closely related to T. sordida (Stål, 1859), and was characterized based on integrative taxonomy using morphological, morphometric, molecular data, and experimental crosses. These analyses, combined with data from the literature (cytogenetics, electrophoresis pattern, molecular analyses, cuticular hydrocarbons pattern, geometric morphometry, cycle, and average time of life as well as geographic distribution) confirm the specific status of T. rosai sp. nov. Natural Trypanosoma cruzi infection, coupled with its presence mostly in peridomestic habitats, indicates that this species can be considered as an important Chagas disease vector from Argentina.
Collapse
Affiliation(s)
- Kaio Cesar Chaboli Alevi
- Laboratório de Parasitologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rodovia Araraquara-Jaú km 1, 14801-902 Araraquara, SP, Brazil; (K.C.C.A.); (J.d.O.); (D.C.C.)
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, 18618-689 Botucatu, SP, Brazil; (A.C.C.G.); (L.M.G.D.); (I.d.F.B.); (Y.V.d.R.); (A.R.)
| | - Jader de Oliveira
- Laboratório de Parasitologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rodovia Araraquara-Jaú km 1, 14801-902 Araraquara, SP, Brazil; (K.C.C.A.); (J.d.O.); (D.C.C.)
| | - Ariane Cristina Caris Garcia
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, 18618-689 Botucatu, SP, Brazil; (A.C.C.G.); (L.M.G.D.); (I.d.F.B.); (Y.V.d.R.); (A.R.)
| | - Daniel Cesaretto Cristal
- Laboratório de Parasitologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rodovia Araraquara-Jaú km 1, 14801-902 Araraquara, SP, Brazil; (K.C.C.A.); (J.d.O.); (D.C.C.)
| | - Luiza Maria Grzyb Delgado
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, 18618-689 Botucatu, SP, Brazil; (A.C.C.G.); (L.M.G.D.); (I.d.F.B.); (Y.V.d.R.); (A.R.)
| | - Isadora de Freitas Bittinelli
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, 18618-689 Botucatu, SP, Brazil; (A.C.C.G.); (L.M.G.D.); (I.d.F.B.); (Y.V.d.R.); (A.R.)
| | - Yago Visinho dos Reis
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, 18618-689 Botucatu, SP, Brazil; (A.C.C.G.); (L.M.G.D.); (I.d.F.B.); (Y.V.d.R.); (A.R.)
| | - Amanda Ravazi
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, 18618-689 Botucatu, SP, Brazil; (A.C.C.G.); (L.M.G.D.); (I.d.F.B.); (Y.V.d.R.); (A.R.)
| | - Ana Beatriz Bortolozo de Oliveira
- Laboratório de Biologia Celular, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Letras e Ciências Exatas, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil; (A.B.B.d.O.); (M.T.V.d.A.-O.); (F.F.M.)
| | - Cleber Galvão
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (FIOCRUZ), Av. Brazil 4365, Pavilhão Rocha Lima, sala 505, 21040-360 Rio de Janeiro, RJ, Brazil
- Correspondence:
| | - Maria Tercília Vilela de Azeredo-Oliveira
- Laboratório de Biologia Celular, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Letras e Ciências Exatas, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil; (A.B.B.d.O.); (M.T.V.d.A.-O.); (F.F.M.)
| | - Fernanda Fernandez Madeira
- Laboratório de Biologia Celular, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Letras e Ciências Exatas, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil; (A.B.B.d.O.); (M.T.V.d.A.-O.); (F.F.M.)
| |
Collapse
|
5
|
Galaka T, Falcone BN, Li C, Szajnman SH, Moreno SNJ, Docampo R, Rodriguez JB. Synthesis and biological evaluation of 1-alkylaminomethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii. Bioorg Med Chem 2019; 27:3663-3673. [PMID: 31296439 DOI: 10.1016/j.bmc.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/23/2019] [Accepted: 07/03/2019] [Indexed: 01/15/2023]
Abstract
As an extension of our project aimed at the search for new chemotherapeutic agents against Chagas disease and toxoplasmosis, several 1,1-bisphosphonates were designed, synthesized and biologically evaluated against Trypanosoma cruzi and Toxoplasma gondii, the etiologic agents of these diseases, respectively. In particular, and based on the antiparasitic activity exhibited by 2-alkylaminoethyl-1,1-bisphosphonates targeting farnesyl diphosphate synthase, a series of linear 2-alkylaminomethyl-1,1-bisphosphonic acids (compounds 21-33), that is, the position of the amino group was one carbon closer to the gem-phosphonate moiety, were evaluated as growth inhibitors against the clinically more relevant dividing form (amastigotes) of T. cruzi. Although all of these compounds resulted to be devoid of antiparasitic activity, these results were valuable for a rigorous SAR study. In addition, unexpectedly, the synthetic designed 2-cycloalkylaminoethyl-1,1-bisphosphonic acids 47-49 were free of antiparasitic activity. Moreover, long chain sulfur-containing 1,1-bisphosphonic acids, such as compounds 54-56, 59, turned out to be nanomolar growth inhibitors of tachyzoites of T. gondii. As many bisphosphonate-containing molecules are FDA-approved drugs for the treatment of bone resorption disorders, their potential nontoxicity makes them good candidates to control American trypanosomiasis and toxoplasmosis.
Collapse
Affiliation(s)
- Tamila Galaka
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Bruno N Falcone
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Catherine Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sergio H Szajnman
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Juan B Rodriguez
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
6
|
Dias N, Carvalho BD, Nitz N, Hagström L, Vital T, Hecht M. Congenital Chagas disease: alert of research negligence. Rev Soc Bras Med Trop 2019; 52:e20180069. [PMID: 30810649 DOI: 10.1590/0037-8682-0069-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Chagas disease (CD), a neglected endemic disease in Latin America, has acquired new epidemiological characteristics with an increase in the importance of alternative transmission routes such as congenital transmission. We evaluated the scientific research on this subject. METHODS We searched the Scielo, BVS, and PubMed databases from 2006 to 2017. RESULTS We identified a small number of published articles, mostly in journals with an impact factor less than 3.0. Studies on human congenital transmission of CD were carried out in only seven different countries. CONCLUSIONS Our data highlight the lack of research on congenital CD.
Collapse
Affiliation(s)
- Nayra Dias
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brasil
| | - Bruna de Carvalho
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brasil
| | - Nadjar Nitz
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brasil
| | - Luciana Hagström
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brasil
| | - Tamires Vital
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brasil
| | - Mariana Hecht
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brasil
| |
Collapse
|
7
|
Chao MN, Lorenzo-Ocampo MV, Szajnman SH, Docampo R, Rodriguez JB. Further insights of selenium-containing analogues of WC-9 against Trypanosoma cruzi. Bioorg Med Chem 2019; 27:1350-1361. [PMID: 30808607 DOI: 10.1016/j.bmc.2019.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/30/2022]
Abstract
As a continuation of our project aimed at searching for new chemotherapeutic agents against American trypanosomiasis (Chagas disease), new selenocyanate derivatives were designed, synthesized and biologically evaluated against the clinically more relevant dividing form of Trypanosoma cruzi, the etiologic agent of this illness. In addition, in order to establish the role of each part of the selenocyanate moiety, different derivatives, in which the selenium atom or the cyano group were absent, were conceived, synthesized and biologically evaluated. In addition, in order to study the optimal position of the terminal phenoxy group, new regioisomers of WC-9 were synthesized and evaluated against T. cruzi. Finally, the resolution of a racemic mixture of a very potent conformationally rigid analogue of WC-9 was accomplished and further tested as growth inhibitors of T. cruzi proliferation. The results provide further insight into the role of the selenocyanate group in its antiparasitic activity.
Collapse
Affiliation(s)
- María N Chao
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - María V Lorenzo-Ocampo
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Juan B Rodriguez
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
8
|
Melo-Filho CC, Braga RC, Muratov EN, Franco CH, Moraes CB, Freitas-Junior LH, Andrade CH. Discovery of new potent hits against intracellular Trypanosoma cruzi by QSAR-based virtual screening. Eur J Med Chem 2018; 163:649-659. [PMID: 30562700 DOI: 10.1016/j.ejmech.2018.11.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022]
Abstract
Chagas disease is a neglected tropical disease (NTD) caused by the protozoan parasite Trypanosoma cruzi and is primarily transmitted to humans by the feces of infected Triatominae insects during their blood meal. The disease affects 6-8 million people, mostly in Latin America countries, and kills more people in the region each year than any other parasite-born disease, including malaria. Moreover, patient numbers are currently increasing in non-endemic, developed countries, such as Australia, Japan, Canada, and the United States. The treatment is limited to one drug, benznidazole, which is only effective in the acute phase of the disease and is very toxic. Thus, there is an urgent need to develop new, safer, and effective drugs against the chronic phase of Chagas disease. Using a QSAR-based virtual screening followed by in vitro experimental evaluation, we report herein the identification of novel potent and selective hits against T. cruzi intracellular stage. We developed and validated binary QSAR models for prediction of anti-trypanosomal activity and cytotoxicity against mammalian cells using the best practices for QSAR modeling. These models were then used for virtual screening of a commercial database, leading to the identification of 39 virtual hits. Further in vitro assays showed that seven compounds were potent against intracellular T. cruzi at submicromolar concentrations (EC50 < 1 μM) and were very selective (SI > 30). Furthermore, other six compounds were also inside the hit criteria for Chagas disease, which presented activity at low micromolar concentrations (EC50 < 10 μM) against intracellular T. cruzi and were also selective (SI > 15). Moreover, we performed a multi-parameter analysis for the comparison of tested compounds regarding their balance between potency, selectivity, and predicted ADMET properties. In the next studies, the most promising compounds will be submitted to additional in vitro and in vivo assays in acute model of Chagas disease, and can be further optimized for the development of new promising drug candidates against this important yet neglected disease.
Collapse
Affiliation(s)
- Cleber C Melo-Filho
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goiás - UFG, Rua 240, Qd.87, Goiania, GO, 74605-510, Brazil
| | - Rodolpho C Braga
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goiás - UFG, Rua 240, Qd.87, Goiania, GO, 74605-510, Brazil
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Chemical Technology, Odessa National Polytechnic University, 1. Shevchenko Ave., Odessa, 65000, Ukraine
| | - Caio Haddad Franco
- National Laboratory of Biosciences (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, 13083-970, Brazil
| | - Carolina B Moraes
- National Laboratory of Biosciences (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, 13083-970, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Lucio H Freitas-Junior
- National Laboratory of Biosciences (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, 13083-970, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goiás - UFG, Rua 240, Qd.87, Goiania, GO, 74605-510, Brazil.
| |
Collapse
|
9
|
de Oliveira ABB, Alevi KCC, Imperador CHL, Madeira FF, Azeredo-Oliveira MTVD. Parasite-Vector Interaction of Chagas Disease: A Mini-Review. Am J Trop Med Hyg 2018; 98:653-655. [PMID: 29514731 PMCID: PMC5930897 DOI: 10.4269/ajtmh.17-0657] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Trypanosoma cruzi is a protozoan of great importance to public health: it has infected millions of people in the world and is the etiologic agent of Chagas disease, which can cause cardiac and gastrointestinal disorders in patients and may even lead to death. The main vector of transmission of this parasite is triatomine bugs, which have a habit of defecating while feeding on blood and passing the parasite to their own hosts through their feces. Although it has been argued that T. cruzi is not pathogenic for this vector, other studies indicate that the success of the infection depends on several molecules and factors, including the insect's intestinal microbiota, which may experience changes as a result of infection that include decreased fitness. Moreover, the effects of infection depend on the insect species, the parasite strain, and environmental conditions involved. However, the parasite-vector interaction is still underexplored. A deeper understanding of this relationship is an important tool for discovering new approaches to T. cruzi transmission and Chagas disease.
Collapse
Affiliation(s)
- Ana Beatriz Bortolozo de Oliveira
- Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho," IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Kaio Cesar Chaboli Alevi
- Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho," IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista "Júlio de Mesquita Filho," FEIS/UNESP, Ilha Solteira, São Paulo, Brazil
| | - Carlos Henrique Lima Imperador
- Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho," IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Fernanda Fernandez Madeira
- Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho," IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Maria Tercília Vilela de Azeredo-Oliveira
- Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho," IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Chao MN, Storey M, Li C, Rodríguez MG, Di Salvo F, Szajnman SH, Moreno SN, Docampo R, Rodriguez JB. Selenium-containing analogues of WC-9 are extremely potent inhibitors of Trypanosoma cruzi proliferation. Bioorg Med Chem 2017; 25:6435-6449. [DOI: 10.1016/j.bmc.2017.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 12/21/2022]
|
11
|
Akinsolu FT, de Paiva VN, Souza SS, Varga O. Patent landscape of neglected tropical diseases: an analysis of worldwide patent families. Global Health 2017; 13:82. [PMID: 29137663 PMCID: PMC5686799 DOI: 10.1186/s12992-017-0306-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND "Neglected Tropical Diseases" (NTDs) affect millions of people in Africa, Asia and South America. The two primary ways of strategic interventions are "preventive chemotherapy and transmission control" (PCT), and "innovative and intensified disease management" (IDM). In the last 5 years, phenomenal progress has been achieved. However, it is crucial to intensify research effort into NTDs, because of the emerging drug resistance. According to the World Health Organization (WHO), the term NTDs covers 17 diseases, namely buruli ulcer, Chagas disease, dengue, dracunculiasis, echinococcosis, trematodiasis, human African trypanosomiasis, leishmaniasis, leprosy, lymphatic filariasis, onchocerciasis, rabies, schistosomiasis, soil-transmitted helminthes, taeniasis, trachoma, and yaws. The aim of this study is to map out research and development (R&D) landscape through patent analysis of these identified NTDs. To achieve this, analysis and evaluation have been conducted on patenting trends, current legal status of patent families, priority countries by earliest priority years and their assignee types, technological fields of patent families over time, and original and current patent assignees. MAIN BODY Patent families were extracted from Patseer, an international database of patents from over 100 patent issuing authorities worldwide. Evaluation of the patents was carried out using the combination of different search terms related to each identified NTD. In this paper, a total number of 12,350 patent families were analyzed. The main countries with sources of inventions were identified to be the United States (US) and China. The main technological fields covered by NTDs patent landscape are pharmaceuticals, biotechnology, organic fine chemistry, analysis of biological materials, basic materials chemistry, and medical technology. Governmental institutions and universities are the primary original assignees. Among the NTDs, leishmaniasis, dengue, and rabies received the highest number of patent families, while human African trypanosomiasis (sleeping sickness), taeniasis, and dracunciliasis received the least. The overall trend of patent families shows an increase between 1985 and 2008, and followed by at least 6 years of stagnation. CONCLUSION The filing pattern of patent families analyzed undoubtedly reveals slow progress on research and development of NTDs. Involving new players, such as non-governmental organizations may help to mitigate and reduce the burden of NTDs.
Collapse
Affiliation(s)
- Folahanmi Tomiwa Akinsolu
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | | | | | - Orsolya Varga
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|