1
|
Balewski Ł, Gdaniec M, Hering A, Furman C, Ghinet A, Kokoszka J, Ordyszewska A, Kornicka A. Synthesis and Structure of Novel Hybrid Compounds Containing Phthalazin-1(2 H)-imine and 4,5-Dihydro-1 H-imidazole Cores and Their Sulfonyl Derivatives with Potential Biological Activities. Int J Mol Sci 2024; 25:11495. [PMID: 39519047 PMCID: PMC11546079 DOI: 10.3390/ijms252111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
A novel hybrid compound-2-(4,5-dihydro-1H-imidazol-2-yl)phthalazin-1(2H)-imine (5) was synthesized and converted into di-substituted sulfonamide derivatives 6a-o and phthalazine ring opening products-hydrazonomethylbenzonitriles 7a-m. The newly prepared compounds were characterized using elemental analyses, IR and NMR spectroscopy, as well as mass spectrometry. Single crystal X-ray diffraction data were collected for the representative compounds 5, 6c, 6e, 7g, and 7k. The antiproliferative activity of compound 5, sulfonyl derivatives 6a-o and benzonitriles 7a-m was evaluated on approximately sixty cell lines within nine tumor-type subpanels, including leukemia, lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast. None of the tested compounds showed any activity against the cancer cell lines used. The antioxidant properties of all compounds were assessed using the DPPH, ABTS, and FRAP radical scavenging methods, as well as the β-carotene bleaching test. Antiradical tests revealed that among the investigated compounds, a moderate ABTS antiradical effect was observed for sulfonamide 6j (IC50 = 52.77 µg/mL). Benzonitrile 7i bearing two chlorine atoms on a phenyl ring system showed activity in a β-carotene bleaching test (IC50 = 86.21 µg/mL). Finally, the interaction AGE/RAGE in the presence of the selected phthalazinimines 6a, 6b, 6g, 6m, and hydrazonomethylbenzonitriles 7a, 7c-g, and 7i-k was determined by ELISA assay. A moderate inhibitory potency toward RAGE was found for hydrazonomethylbenzonitriles-7d with an electron-donating methoxy group (R = 3-CH3O-C6H4) and 7f, 7k with an electron-withdrawing substituent (7f, R = 2-Cl-C6H4; 7k, R = 4-NO2-C6H4).
Collapse
Affiliation(s)
- Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Christophe Furman
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167—RID-AGE—Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France; (C.F.); (A.G.)
| | - Alina Ghinet
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167—RID-AGE—Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France; (C.F.); (A.G.)
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Anna Ordyszewska
- Department of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Centers, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
2
|
Qiao J, Wang S, Liu X, Feng X. Enantioselective [3+2] Cycloaddition of Donor-Acceptor Aziridines and Imines to Construct 2,5-trans-Imidazolidines. Chemistry 2023; 29:e202203757. [PMID: 36602265 DOI: 10.1002/chem.202203757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
An enantioselective [3+2] cycloaddition of donor-acceptor aziridines with N-aryl protected imines was developed with a Ni(ClO4 )2 ⋅ 6H2 O/N,N'-dioxide catalyst system, providing a broad range of chiral trans-substituted imidazolidine compounds with good yields and excellent enantioselectivities (up to 99 % yield, up to 98 % ee). Control experiments indicated that the products could offer excellent diastereoselectivities with the control of chiral Ni(II)-N,N'-dioxide complex and the interaction of the substrates. The possible catalytic process was proposed to rationalize the stereocontrol.
Collapse
Affiliation(s)
- Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Shiyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
3
|
Dai L, Zhu Q, Zeng J, Liu Y, Zhong G, Han X, Zeng X. Asymmetric synthesis of chiral imidazolidines by merging copper and visible light-induced photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light induced copper catalyzed synthesis of decarboxylative radical coupling/cyclization reaction for the synthesis of chiral imidazolidines in high yields and enantioselectivities was reported.
Collapse
Affiliation(s)
- Linlong Dai
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiaohong Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuheng Liu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoyu Han
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
A mononuclear PdII complex with Naphcon; crystal structure, experimental and computational studies of the interaction with DNA/BSA and evaluation of anticancer activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Characterization of a Solvent-Tolerant Amidohydrolase Involved in Natural Product Heterocycle Formation. Catalysts 2021. [DOI: 10.3390/catal11080892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterocycles are important building blocks in pharmaceutical drugs and their enzymatic synthesis is attracting increasing interest. In recent years, various enzymes of the amidohydrolase superfamily were reported to catalyze heterocycle-forming condensation reactions. One of these enzymes, MxcM, is biochemically and kinetically characterized in this study. MxcM generates an imidazoline moiety in the biosynthesis of the natural product pseudochelin A, which features potent anti-inflammatory properties. The enzyme shows maximal activity at 50 °C and pH 10 as well as a kcat/Km value of 22,932 s−1 M−1 at its temperature optimum. Experimental data suggest that the activity of MxcM does not depend on a catalytic metal ion, which is uncommon among amidohydrolases. MxcM is highly active in diverse organic solvents and concentrated salt solutions. Furthermore, we show that MxcM is also capable to introduce imidazoline rings into derivatives of its natural substrate myxochelin B. Overall, MxcM is a solvent-stable, halotolerant enzyme with promising biochemical and kinetic properties and, in future, might become a valuable biocatalyst for the manufacturing of pharmaceutical drugs.
Collapse
|
6
|
Han B, He XH, Liu YQ, He G, Peng C, Li JL. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem Soc Rev 2021; 50:1522-1586. [PMID: 33496291 DOI: 10.1039/d0cs00196a] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The efficacy and synthetic versatility of asymmetric organocatalysis have contributed enormously to the field of organic synthesis since the early 2000s. As asymmetric organocatalytic methods mature, they have extended beyond the academia and undergone scale-up for the production of chiral drugs, natural products, and enantiomerically enriched bioactive molecules. This review provides a comprehensive overview of the applications of asymmetric organocatalysis in medicinal chemistry. A general picture of asymmetric organocatalytic strategies in medicinal chemistry is firstly presented, and the specific applications of these strategies in pharmaceutical synthesis are systematically described, with a focus on the preparation of antiviral, anticancer, neuroprotective, cardiovascular, antibacterial, and antiparasitic agents, as well as several miscellaneous bioactive agents. The review concludes with a discussion of the challenges, limitations and future prospects for organocatalytic asymmetric synthesis of medicinally valuable compounds.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
7
|
Coin G, Dubourdeaux P, Bayle PA, Lebrun C, Maldivi P, Latour JM. Imidazoline synthesis: mechanistic investigations show that Fe catalysts promote a new multicomponent redox reaction. Dalton Trans 2021; 50:6512-6519. [PMID: 33908990 DOI: 10.1039/d1dt00919b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multicomponent reactions are attracting strong interest because they contribute to develop more efficient synthetic chemistry. Understanding their mechanism at the molecular level is thus an important issue to optimize their operation. The development of integrated experimental and theoretical approaches has very recently emerged as most powerful to achieve this goal. In the wake of our recent investigation of amidine synthesis, we used this approach to explore how an Fe-catalyzed aziridination can lead to an imidazoline when run in acetonitrile. We report that the synthesis of imidazoline by combination of styrene, acetonitrile, an iron catalyst and a nitrene precursor occurs along a new kind of multicomponent reaction. The formation of imidazoline results from acetonitrile interception of a benzyl radical styrene aziridination intermediate within Fe coordination sphere, as opposed to classical nucleophilic opening of the aziridine by a Lewis acid. Comparison of this mechanism to that of amidine formation allows a rationalization of the modes of intermediates trapping by acetonitrile according to the oxidation state Fe active species. The molecular understanding of these processes may help to design other multicomponent reactions.
Collapse
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - LCBM/pmb, F-38000 Grenoble, France. and Univ. Grenoble Alpes, CNRS, UMR 5250, DCM, F-38000 Grenoble, France
| | | | | | - Colette Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - SyMMES, F-38000 Grenoble, France.
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - SyMMES, F-38000 Grenoble, France.
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - LCBM/pmb, F-38000 Grenoble, France.
| |
Collapse
|
8
|
Liu S, Li W, Pang Y, Xiao H, Zhou Y, Wang X. Green Synthesis of 2‐Substituted Imidazolines using Hydrogen Peroxide Catalyzed by Tungstophosphoric Acid and Tetrabutylammonium Bromide in Water. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuai Liu
- Dongguan University of TechnologyDongguan Guangdong 523000 China
| | - Wang Li
- School of Life ScienceJiangxi Science and Technology Normal University Nanchang 330013 China
| | - Yiying Pang
- School of Life ScienceJiangxi Science and Technology Normal University Nanchang 330013 China
| | - Hesheng Xiao
- School of Life ScienceJiangxi Science and Technology Normal University Nanchang 330013 China
| | - Yi Zhou
- School of Life ScienceJiangxi Science and Technology Normal University Nanchang 330013 China
| | - Xiaoji Wang
- School of Life ScienceJiangxi Science and Technology Normal University Nanchang 330013 China
| |
Collapse
|
9
|
Zhu HP, Xie K, He XH, Huang W, Zeng R, Fan Y, Peng C, He G, Han B. Organocatalytic diastereoselective [3+2] cyclization of MBH carbonates with dinucleophiles: synthesis of bicyclic imidazoline derivatives that inhibit MDM2–p53 interaction. Chem Commun (Camb) 2019; 55:11374-11377. [PMID: 31478534 DOI: 10.1039/c9cc05916d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MBH carbonates were successfully applied to a stereoselective [3+3] annulation with N,C-dinucleophiles for the first time, yielding a collection of pharmacologically interesting bicyclic imidazolines which were found to inhibit MDM2–p53 binding.
Collapse
Affiliation(s)
- Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Ke Xie
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Yang Fan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital, Sichuan University
- Chengdu 610041
- China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| |
Collapse
|
10
|
Pradhan S, Shahi CK, Bhattacharyya A, Chauhan N, Ghorai MK. Divergent and Stereospecific Routes to Five to Eight-Membered 1,3- and 1,4-Di-Aza-Heterocycles via Ring-Opening Cyclization of Activated Aziridines with Aryl Amines. ChemistrySelect 2017. [DOI: 10.1002/slct.201602062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sajan Pradhan
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016, Uttar Pradesh India
| | - Chandan Kumar Shahi
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016, Uttar Pradesh India
| | - Aditya Bhattacharyya
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016, Uttar Pradesh India
| | - Navya Chauhan
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016, Uttar Pradesh India
| | - Manas K. Ghorai
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016, Uttar Pradesh India
| |
Collapse
|