1
|
Berland L, Gabr Z, Chang M, Ilié M, Hofman V, Rignol G, Ghiringhelli F, Mograbi B, Rashidian M, Hofman P. Further knowledge and developments in resistance mechanisms to immune checkpoint inhibitors. Front Immunol 2024; 15:1384121. [PMID: 38903504 PMCID: PMC11188684 DOI: 10.3389/fimmu.2024.1384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
The past decade has witnessed a revolution in cancer treatment, shifting from conventional drugs (chemotherapies) towards targeted molecular therapies and immune-based therapies, in particular immune-checkpoint inhibitors (ICIs). These immunotherapies release the host's immune system against the tumor and have shown unprecedented durable remission for patients with cancers that were thought incurable, such as metastatic melanoma, metastatic renal cell carcinoma (RCC), microsatellite instability (MSI) high colorectal cancer and late stages of non-small cell lung cancer (NSCLC). However, about 80% of the patients fail to respond to these immunotherapies and are therefore left with other less effective and potentially toxic treatments. Identifying and understanding the mechanisms that enable cancerous cells to adapt to and eventually overcome therapy can help circumvent resistance and improve treatment. In this review, we describe the recent discoveries on the onco-immunological processes which govern the tumor microenvironment and their impact on the resistance to PD-1/PD-L1 checkpoint blockade.
Collapse
Affiliation(s)
- Léa Berland
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Zeina Gabr
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
- School of Life Science, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michelle Chang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Marius Ilié
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Hospital-Integrated Biobank (BB-0033–00025), Pasteur Hospital, Nice, France
| | - Véronique Hofman
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Hospital-Integrated Biobank (BB-0033–00025), Pasteur Hospital, Nice, France
| | - Guylène Rignol
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
| | - François Ghiringhelli
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Baharia Mograbi
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
| | - Mohamad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Paul Hofman
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Hospital-Integrated Biobank (BB-0033–00025), Pasteur Hospital, Nice, France
| |
Collapse
|
2
|
Wang J, Wang S, Zhang Y, Zhang W. Bibliometric analysis of evolutionary trajectory and prospective directions of LAG-3 in cancer. Front Immunol 2024; 15:1329775. [PMID: 38390331 PMCID: PMC10881671 DOI: 10.3389/fimmu.2024.1329775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Objectives Perform a bibliometric analysis on the role of LAG-3 in the domain of cancer, elucidate the prevailing areas of research, and visually depict the evolutionary trajectory and prospective directions of LAG-3 research over the past twenty-three decades. Materials and methods Between 2000 and 2023, a comprehensive review of scholarly articles pertaining to LAG-3 research in the context of cancer was carried out using the Web of Science Core Collection (WoSCC) database. Bibliometric analysis can be conducted by taking advantage of VOSviewer (version 1.6.16) and CiteSpace (version 6.2.R4). Create a network diagram to visually represent various authors, countries, and organizations while assessing the publishing years, journals, references, and keywords. Results In conclusion, 1841 records were identified and published in 587 publications. These records were authored by 12,849 individuals affiliated with 2491 institutes across 74 countries. There has been a substantial surge in publications subsequent to 2013. The USA, China, and Germany gave the majority of records, amounting to 69.69%. American institutions actively engage in collaboration with institutions located in other countries. Triebel, F., Vignali, Dario A. A., Workman, Creg J. Drake, Charles G., and Elkord, Eyad are highly regarded authors in their respective fields. However, it is worth noting that Triebel exhibits limited collaboration with other writers. The examination of the role of LAG-3 in cancer and its potential for use in clinical settings is a discernible trend, as seen by keyword analysis. Conclusion The scientific interest in and attention towards LAG-3 has experienced a significant rise since 2013. The United States is leading the way, with China following closely behind. Promoting collaboration among writers, nations, and institutions with varied backgrounds is imperative. The discipline of immunotherapy is currently seeing ongoing progress. A thorough investigation of the distinctive cis ligand TCR-CD3 complex of LAG-3 and its signal transduction mechanism is necessary. Additionally, it is worthwhile to explore novel combinations of LAG-3 therapy.
Collapse
Affiliation(s)
| | | | | | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Rastin F, Javid H, Oryani MA, Rezagholinejad N, Afshari AR, Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int Immunopharmacol 2024; 126:111055. [PMID: 37992445 DOI: 10.1016/j.intimp.2023.111055] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
4
|
Perez-Santos M, Anaya-Ruiz M, Villafaña-Diaz L, Sánchez Esgua G. Approaches for development of LAG-3 inhibitors and the promise they hold as anticancer agents. Expert Opin Drug Discov 2022; 17:1341-1355. [PMID: 36399656 DOI: 10.1080/17460441.2022.2148652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION LAG-3 is considered to be the third point of immunological control in relation to clinical trials that address cancer treatment, only behind PD-1 and CTLA-4, due to its role as a suppressor of the immune response and enhancer of differentiation of Treg cells. AREAS COVERED The authors focus on emphasizing the strategy of development of LAG-3 inhibitors to develop anticancer therapeutics, especially from the perspective of designing new monoclonal and bispecific antibodies against LAG-3. This article also covers details of patents and clinical trials of LAG-3 inhibitors reported in the literature. In addition, we highlight as future research challenges the design and development of peptides and small molecules as inhibitors of LAG-3 function. EXPERT OPINION Three approaches have been used for the development of LAG-3 inhibitors, and they include inhibitory LAG-3 binding peptides and antagonist monoclonal and multispecific antibodies. These approaches include more than 100 clinical trials of 21 molecules that bind to LAG-3 and block its binding to MHC II. However, these approaches do not cover the design and development of peptides and small molecules that could inhibit the function of LAG-3, for which it is necessary to develop new alternatives that cover this gap.
Collapse
Affiliation(s)
- Martin Perez-Santos
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla CP, México
| | - Luis Villafaña-Diaz
- Centro de Investigación en Inteligencia de Negocios, Universidad Popular Autónoma del Estado de Puebla, Puebla, México
| | - Gabriela Sánchez Esgua
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP, México
| |
Collapse
|
5
|
Kuzevanova A, Apanovich N, Mansorunov D, Korotaeva A, Karpukhin A. The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines 2022; 10:biomedicines10092081. [PMID: 36140182 PMCID: PMC9495440 DOI: 10.3390/biomedicines10092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
To date, certain problems have been identified in cancer immunotherapy using the inhibition of immune checkpoints (ICs). Despite the excellent effect of cancer therapy in some cases when blocking the PD-L1 (programmed death-ligand 1) ligand and the immune cell receptors PD-1 (programmed cell death protein 1) and CTLA4 (cytotoxic T-lymphocyte-associated protein 4) with antibodies, the proportion of patients responding to such therapy is still far from desirable. This situation has stimulated the exploration of additional receptors and ligands as targets for immunotherapy. In our article, based on the analysis of the available data, the TIM-3 (T-cell immunoglobulin and mucin domain-3), LAG-3 (lymphocyte-activation gene 3), TIGIT (T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains), VISTA (V-domain Ig suppressor of T-cell activation), and BTLA (B- and T-lymphocyte attenuator) receptors and their ligands are comprehensively considered. Data on the relationship between receptor expression and the clinical characteristics of tumors are presented and are analyzed together with the results of preclinical and clinical studies on the therapeutic efficacy of their blocking. Such a comprehensive analysis makes it possible to assess the prospects of receptors of this series as targets for anticancer therapy. The expression of the LAG-3 receptor shows the most unambiguous relationship with the clinical characteristics of cancer. Its inhibition is the most effective of the analyzed series in terms of the antitumor response. The expression of TIGIT and BTLA correlates well with clinical characteristics and demonstrates antitumor efficacy in preclinical and clinical studies, which indicates their high promise as targets for anticancer therapy. At the same time, the relationship of VISTA and TIM-3 expression with the clinical characteristics of the tumor is contradictory, and the results on the antitumor effectiveness of their inhibition are inconsistent.
Collapse
|
6
|
Barshidi A, Karpisheh V, Noukabadi FK, Kiani FK, Mohammadi M, Afsharimanesh N, Ebrahimi F, Kiaie SH, Navashenaq JG, Hojjat-Farsangi M, Zolbanin NM, Mahmoodpoor A, Hassannia H, Nami S, Jalali P, Jafari R, Jadidi-Niaragh F. Dual Blockade of PD-1 and LAG3 Immune Checkpoints Increases Dendritic Cell Vaccine Mediated T Cell Responses in Breast Cancer Model. Pharm Res 2022; 39:1851-1866. [PMID: 35715669 DOI: 10.1007/s11095-022-03297-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Increasing the efficiency of unsuccessful immunotherapy methods is one of the most important research fields. Therefore, the use of combination therapy is considered as one of the ways to increase the effectiveness of the dendritic cell (DC) vaccine. In this study, the inhibition of immune checkpoint receptors such as LAG3 and PD-1 on T cells was investigated to increase the efficiency of T cells in response to the DC vaccine. METHODS We used trimethyl chitosan-dextran sulfate-lactate (TMC-DS-L) nanoparticles (NPs) loaded with siRNA molecules to quench the PD-1 and LAG3 checkpoints' expression. RESULTS Appropriate physicochemical characteristics of the generated NPs led to efficient inhibition of LAG3 and PD-1 on T cells, which was associated with increased survival and activity of T cells, ex vivo. Also, treating mice with established breast tumors (4T1) using NPs loaded with siRNA molecules in combination with DC vaccine pulsed with tumor lysate significantly inhibited tumor growth and increased survival in mice. These ameliorative effects were associated with increased anti-tumor T cell responses and downregulation of immunosuppressive cells in the tumor microenvironment and spleen. CONCLUSION These findings strongly suggest that TMC-DS-L NPs loaded with siRNA could act as a novel tool in inhibiting the expression of immune checkpoints in the tumor microenvironment. Also, combination therapy based on inhibition of PD-1 and LAG3 in combination with DC vaccine is an effective method in treating cancer that needs to be further studied.
Collapse
Affiliation(s)
- Asal Barshidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Karpisheh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mohammadi
- Department of Cell and Molecular Biology, School of Advanced Sciences, Islamic Azad University, Tehran Medical Branch, Tehran, , Iran
| | - Negin Afsharimanesh
- Department of Microbiology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Sciences Research Center,, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, , Urmia University of Medical Sciences, Urmia, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sanam Nami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Hegi-Johnson F, Rudd S, Hicks RJ, De Ruysscher D, Trapani JA, John T, Donnelly P, Blyth B, Hanna G, Everitt S, Roselt P, MacManus MP. Imaging immunity in patients with cancer using positron emission tomography. NPJ Precis Oncol 2022; 6:24. [PMID: 35393508 PMCID: PMC8989882 DOI: 10.1038/s41698-022-00263-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.
Collapse
Affiliation(s)
- Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stacey Rudd
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Rodney J Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joseph A Trapani
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thomas John
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul Donnelly
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Blyth
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Roselt
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Makaremi S, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Sgambato A, Ghorbaninezhad F, Safarpour H, Argentiero A, Brunetti O, Bernardini R, Silvestris N, Baradaran B. Immune Checkpoint Inhibitors in Colorectal Cancer: Challenges and Future Prospects. Biomedicines 2021; 9:1075. [PMID: 34572263 PMCID: PMC8467932 DOI: 10.3390/biomedicines9091075] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is a new pillar of cancer therapy that provides novel opportunities to treat solid tumors. In this context, the development of new drugs targeting immune checkpoints is considered a promising approach in colorectal cancer (CRC) treatment because it can be induce specific and durable anti-cancer effects. Despite many advances in the immunotherapy of CRC, there are still limitations and obstacles to successful treatment. The immunosuppressive function of the tumor microenvironment (TME) is one of the causes of poor response to treatment in CRC patients. For this reason, checkpoint-blocking antibodies have shown promising outcomes in CRC patients by blocking inhibitory immune checkpoints and enhancing immune responses against tumors. This review summarizes recent advances in immune checkpoint inhibitors (ICIs), such as CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3 in CRC, and it discusses various therapeutic strategies with ICIs, including the double blockade of ICIs, combination therapy of ICIs with other immunotherapies, and conventional treatments. This review also delineates a new hopeful path in the combination of anti-PD-1/anti-PD-L1 with other ICIs such as anti-CTLA-4, anti-LAG-3, and anti-TIM-3 for CRC treatment.
Collapse
Affiliation(s)
- Shima Makaremi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak 3848176941, Iran;
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Alessandro Sgambato
- Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 5972362 Rome, Italy;
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 5972362 Rome, Italy
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Antonella Argentiero
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Oronzo Brunetti
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95121 Catania, Italy;
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| |
Collapse
|
9
|
Expression of the immune checkpoint receptors CTLA-4, LAG-3, and TIM-3 in β-thalassemia major patients: correlation with alloantibody production and regulatory T cells (Tregs) phenotype. Ann Hematol 2021; 100:2463-2469. [PMID: 34324022 DOI: 10.1007/s00277-021-04605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
Alloimmunization is a serious complication in β-thalassemia major patients as a result of repeated blood transfusion. The immune checkpoint receptors play an important role in regulating immune system homeostasis and the function of the immune cells. This study aimed to evaluate the expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), lymphocyte activation gene 3 (LAG-3), and T-cell immunoglobulin and mucin domain-containing protein-3 (TIM-3) immune checkpoint molecules in β-thalassemia major patients with and without alloantibody. For this purpose, 68 β-thalassemia major patients with (34 patients) and without (34 patients) alloantibody as well as 20 healthy controls were enrolled. The expression of these genes was evaluated in different groups of patients by SYBR Green real-time PCR method. Our results showed that the mean expression of LAG-3 was significantly increased in thalassemia patients compared to the control group (*P < 0.001). However, there was no significant difference in expression of the CTLA-4 and TIM-3 as well as LAG-3 genes between patients with and without alloantibody (P > 0.05). A positive correlation was observed between the level of LAG-3 expression with markers associated with Treg function including FOXP3 and GDF-15 genes in β-thalassemia major patients. Taken together, the LAG-3 molecule might have a more prominent role in the abnormality of the immune system in thalassemia patients especially the function of regulatory T cells (Tregs), prior to the CTLA-4 and TIM-3 genes.
Collapse
|
10
|
Abstract
OX40 and 5T4 are molecules that play a role in T-cell expansion and cytoskeleton's disruption in cancer, respectively. US2019161555 patent describes a bispecific antibody that targets OX40/5T4 with the potential application of cancer treatment. The method of analysis of the US201916155 patent consisted of claim's analysis, as well as the chemical/biological information's analysis of the bispecific antibody. The patent includes independent claims related to bispecific antibodies that bind to OX40/5T4, DNA encoding the antibodies, a vector that harbors the DNA, a host cell that contains the vector, a pharmaceutical composition containing a pharmaceutically effective amount of the antibodies, medical use of the antibodies, use of the antibodies in the treatment or prevention of neoplastic disorders and a method of treating neoplastic disorders. Bispecific antibodies that target OX40/5T4 can activate IL-2 secretion in CD4+ T cells.
Collapse
|
11
|
Cebada J, Perez-Santos M, Bandala C, Lara-Padilla E, Herrera-Camacho I, Rosas-Murrieta NH, Millán-Pérez Peña L, Monjaraz E, Flores A, Anaya-Ruiz M. OX40 agonists for cancer treatment: a patent review. Expert Opin Ther Pat 2020; 31:81-90. [PMID: 32945223 DOI: 10.1080/13543776.2021.1825688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION OX40 is an immune checkpoint in cancer and its presence in cancer is a good prognosis, making it a highly relevant target for the development of new immunotherapies. AREAS COVERED The patent literature reveals vital information on new trends in cancer therapies. The authors used the patent databases of the six major patent offices in the world: United States Patent and Trademark Office, European Patent Office, World Intellectual Property Organization, Japan Patent Office, State Office of Intellectual Property of China and Korean Intellectual Property Office, to generate a panorama of patents related to OX40 agonists. Specific patents have been grouped into innovative patents and adoption patents. EXPERT OPINION An increasing trend in the development of OX40 agonists in cancer, particularly in the years 2018 and 2019. United States was the leader in generating patents, followed by China and England. Major pharmaceutical companies have at least one anti-OX40 agonist, MEDI6469 and MEDI-0562 (AstraZeneca), PF-04518600 (Pfizer), GSK3174998 (GlaxoSmithKline), BMS-986,178 (Bristol-Myers Squibb) and MOXR0916 (Roche), which represent 68% of clinical trials conducted with OX40 agonists.
Collapse
Affiliation(s)
- Jorge Cebada
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2706, Col. Volcanes, CP 72410 Puebla, Puebla, Mexico
| | - Martin Perez-Santos
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP 72570, México
| | - Cindy Bandala
- Departamento de Neurociencias, Instituto Nacional de Rehabilitación, Ciudad de México, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Eleazar Lara-Padilla
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Edificio 103F, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, CP 72592 Puebla, Puebla, México
| | - Nora Hilda Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Edificio 103F, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72592 Puebla, Puebla, México
| | - Lourdes Millán-Pérez Peña
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Edificio 103F, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72592 Puebla, Puebla, México
| | - Eduardo Monjaraz
- Instituto de Fisiología, Benemerita Universidad Autónoma de Puebla, Av. 14 Sur 6301 Colonia Jardines de San Manuel CP 72570 Puebla, Puebla, Mexico
| | - Amira Flores
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla CP 74360, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla CP 74360, México
| |
Collapse
|
12
|
Wang L, Yu C, Wang K, Wang J. A reporter gene assay for measuring the bioactivity of anti-LAG-3 therapeutic antibodies. LUMINESCENCE 2020; 35:1408-1415. [PMID: 32598535 DOI: 10.1002/bio.3905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/06/2022]
Abstract
Although enormous success has been achieved with anti-PD-1/PD-L1 and anti-CTLA-4 monoclonal antibodies (mAbs), their unsatisfactory response rate in cancer patients has been driving the research and development of novel immune checkpoint inhibitors (ICIs). Anti-LAG-3 mAbs, as one of the most promising candidates, are now being tested for various human cancers at different stages of clinical trials. Here, we describe the development and validation of a reporter gene assay (RGA) to measure the bioactivity of anti-LAG-3 mAbs. We established the bioassay based on parental Raji cells and a Jurkat cell line stably transfected with human LAG-3 gene and luciferase reporter elements controlled by nuclear factor of activated T cell (NFAT) from the IL-2 promoter. After optimization of key parameters, the established RGA showed excellent precision, specificity, accuracy, and stability. The mechanism of action (MOA) relatedness and the excellent assay performance make the RGA suitable for the characterization, lot release, and stability test of anti-LAG-3 mAbs.
Collapse
Affiliation(s)
- Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Biomedical Base,Daxing District, Beijing, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Biomedical Base,Daxing District, Beijing, China
| | - Kaiqin Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Biomedical Base,Daxing District, Beijing, China
| | - Junzhi Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Biomedical Base,Daxing District, Beijing, China
| |
Collapse
|
13
|
Viteri S, Cabrera-Gálvez C, Rosell R. Keynote 407: the combination of pembrolizumab and chemotherapy cracks the shell of squamous cell lung cancer. Transl Lung Cancer Res 2020; 9:828-832. [PMID: 32676347 PMCID: PMC7354136 DOI: 10.21037/tlcr-20-400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Santiago Viteri
- Dr. Rosell Oncology Institute, Teknon Medical Center, Quironsalud Group, Barcelona, Spain
| | - Carlos Cabrera-Gálvez
- Dr. Rosell Oncology Institute, Teknon Medical Center, Quironsalud Group, Barcelona, Spain
| | - Rafael Rosell
- Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Badalona, Spain
| |
Collapse
|
14
|
Cebada J, Flores A, Bandala C, Lizaliturri-Flores I, Villa-Ruano N, Perez-Santos M. Bispecific anti-PD-1/LAG-3 antibodies for treatment of advanced or metastatic solid tumors: a patent evaluation of US2018326054. Expert Opin Ther Pat 2020; 30:487-494. [PMID: 32397849 DOI: 10.1080/13543776.2020.1767071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Due to the primary role of PD-1 and LAG-3 in regulating the immune response in tumors, there is a need to develop therapies focused on the inhibition of PD-1 and LAG-3 in order to improve the immune response in patients with cancer. The authors of US2018326054 patent propose a method to eradicate cancer by using bispecific anti-PD-1/LAG-3 antibodies. AREAS COVERED The US2018326054 patent describes anti-PD-1/LAG3 antibodies, pharmaceutical composition that contains it, and their application for cancer treatment, particularly pancreatic carcinoma. Proof concept and preclinical results show anti-PD-1/LAG-3 bispecific antibodies bind and are internalized by CD4 + T cells thereby increasing their effector functions (release of Granzyme B and INF-γ) in the presence of tumor cells, and completely suppress tumors in a murine model. EXPERT OPINION Anti-PD-1/LAG-3 bispecific antibodies of the US2018326054 patent are new in a general concept, but treatment data is only shown for pancreatic carcinoma. The results to be obtained in future clinical trials of safety and efficacy could conclude whether these bispecific anti-PD-1/LAG-3 antibodies will be useful in a cancer treatment scheme.
Collapse
Affiliation(s)
- Jorge Cebada
- Facultad De Medicina, Benemérita Universidad Autónoma De Puebla , Puebla, Puebla, Mexico
| | - Amira Flores
- Instituto De Fisiología, Benemerita Universidad Autónoma De Puebla , Puebla, Puebla, Mexico
| | - Cindy Bandala
- Departamento De Neurociencias, Instituto Nacional De Rehabilitación , Ciudad De México, Mexico.,Escuela Superior De Medicina, Instituto Politécnico Naciona , Ciudad De México, Mexico
| | - Ian Lizaliturri-Flores
- Lab De Modelado Molecular Y Diseño De Fármacos. Escuela Superior De Medicina, Instituto Politécnico Nacional , Ciudad De México, Mexico
| | - Nemesio Villa-Ruano
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla , Puebla, Mexico
| | - Martin Perez-Santos
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla , Puebla, Mexico
| |
Collapse
|
15
|
Millán-Pérez Peña L, Martin PS, Herrera-Camacho I, Bandala C, Anaya-Ruiz M. Colon carcinoma treatment using bispecific anti-GITR/CTLA-4 antibodies: a patent evaluation of WO2018091739. Expert Opin Ther Pat 2020; 30:307-311. [PMID: 32106724 DOI: 10.1080/13543776.2020.1732352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: GITR is a receptor that increases the activation of T lymphocytes against tumor cells. There is a great need to discover and develop new therapies focused on activating GITR to increase the immune response in various types of cancer. The authors of WO2018091739 patent propose a method to eradicate cancer by using bispecific anti-GITR/anti-CTLA-4 antibodies.Areas covered: WO2018091739 patent describes anti-GITR/anti-CTLA-4 antibodies, pharmaceutical composition that contains it, and their application for cancer treatment, particularly colon carcinoma. Anti-GITR/anti-CTLA-4 antibodies are used at a dosage of 0.0003-3 mg antibody/kg patient weight and is suspended in an isotonic solution consisting of sodium phosphate, sucrose, NaCl, and polysorbate 80.Expert opinion: WO2018091739 only demonstrates that bispecific antibodies activate T cells, an antibody-dependent cellular cytotoxicity of CHO cells, and tumor inhibition in murine models of colon carcinoma. There are no clinical trials that show that treatment with bispecific antibodies can induce an antitumor response in cancer patients.
Collapse
Affiliation(s)
- Lourdes Millán-Pérez Peña
- Laboratorio De Bioquímica Y Biología Molecular, Centro De Química Del Instituto De Ciencias (ICUAP), Ciudad Universitaria, Benemérita Universidad Autónoma De Puebla, Puebla, México
| | - Perez-Santos Martin
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla, Puebla, México
| | - Irma Herrera-Camacho
- Laboratorio De Bioquímica Y Biología Molecular, Centro De Química Del Instituto De Ciencias (ICUAP), Ciudad Universitaria, Benemérita Universidad Autónoma De Puebla, Puebla, México
| | - Cindy Bandala
- Departamento De Neurociencias, Instituto Nacional De Rehabilitación, Ciudad De México, Mexico
| | - Maricruz Anaya-Ruiz
- Laboratorio De Biología Celular, Centro De Investigación Biomédica De Oriente, Instituto Mexicano Del Seguro Social, Puebla, México
| |
Collapse
|
16
|
Quintella CM, Quintella HM, Rohweder M, Quintella GM. Advances in patent applications related to cancer vaccine using CpG-ODN and OX40 association. Expert Opin Ther Pat 2020; 30:287-301. [PMID: 32008403 DOI: 10.1080/13543776.2020.1724960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: This review aims to assess the available technologies, advances, and trends from technological readiness level 4 to level 8 for cancer immunologic therapeutics using the association of OX40 and CPG-ODN, usually known as cancer vaccine.Areas covered: Patent documents and clinic studies referring to the use of CpG-ODN and of OX40 association for cancer therapeutics. Patent data were obtained within the worldwide basis of the European Patent Office (EPO). The 138 patents of 36 patent families found were analyzed focusing on word distribution of technology developers and potential markets, legal status, annual evolution of first priority, technological domains, applicants and co-applicants and detailed analysis of each technology. Two clinical studies are in progress.Expert opinion: Traditional methods in post cancer diagnosis are being replaced by immunological association therapies. It is expected that the development of cancer vaccines will expand the scope of cancer-specific immunotherapy, especially if associated with alternative systems for expression and delivery with future potential. It is expected that genetic and controlled and/or specific nano delivery are improved. Furthermore, these new developments will likely address the problem of long-term treatments, reducing cancer mortality and reducing patient numbers worldwide.
Collapse
Affiliation(s)
- Cristina M Quintella
- Chemistry Institute, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil.,Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, Brasil
| | - Heitor M Quintella
- PROFNIT - Postgraduate Program on Intellectual Property and Technology Transfer for Innovation, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil
| | - Mayla Rohweder
- Chemistry Institute, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil.,Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, Brasil.,CEPARH - Research and Assistance Center on Human Reproduction, Salvador, BA, Brazil
| | - Guilherme M Quintella
- Chemistry Institute, Federal University of Bahia, Campus Universitário de Ondina, Salvador, BA, Brasil.,Medicine School, Federal University of Minas Gerais, Belo Horizonte, MG, Brasil.,Quintellar Legal Consulting Company, Salvador, BA, Brazil
| |
Collapse
|
17
|
Perez-Santos M, Guerrero-González T, Gómez-Conde E, Cebada J, Flores A, Villa-Ruano N. Treatment of cancer with an anti-KIR antibody: a patent evaluation of US9879082 and US2018208652. Expert Opin Ther Pat 2020; 30:159-162. [DOI: 10.1080/13543776.2020.1717469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Martin Perez-Santos
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla, Puebla, México
| | - Tayde Guerrero-González
- Servicio De Traumatología Y Ortopedia, Hospital Regional 1o. De Octubre, Instituto De Seguridad Y Servicios Sociales De Los Trabajadores Del Estado, México, México
| | - Eduardo Gómez-Conde
- Laboratorio De Investigación En Inmunobiología, Facultad De Medicina, Benemérita Universidad Autónoma De Puebla, Puebla, Mexico
| | - Jorge Cebada
- Facultad De Medicina, Benemérita Universidad Autónoma De Puebla, Puebla, Mexico
| | - Amira Flores
- Instituto De Fisiología, Benemerita Universidad Autónoma De Puebla, Puebla, Mexico
| | - Nemesio Villa-Ruano
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla, Puebla, México
| |
Collapse
|
18
|
Perez-Santos M, Anaya-Ruiz M, Herrera-Camacho I, Rosas-Murrieta NH, Millán-Pérez Peña L. Cancer combinatorial immunotherapy using etigilimab and nivolumab: a patent evaluation of WO2018102536. Expert Opin Ther Pat 2020; 30:83-86. [DOI: 10.1080/13543776.2020.1709445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Martin Perez-Santos
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, México
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Nora Hilda Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Lourdes Millán-Pérez Peña
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
19
|
Du H, Yi Z, Wang L, Li Z, Niu B, Ren G. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int Immunopharmacol 2019; 78:106113. [PMID: 31841754 DOI: 10.1016/j.intimp.2019.106113] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Many studies have shown a special interaction between LAG3 and PD-1 in T cell inhibition, while the co-expression and effect of LAG3 and PD-1 on T cells in breast cancer patients are still not very clear. Here, with strict exclusion criteria, 88 patients with breast cancer and 18 healthy controls were enrolled. The percentages of LAG3+PD-1+ T cells in their peripheral blood (PBL) and tumor infiltrating T cells (TIL) were analyzed by flow cytometry, which showed an increase in TILs but no difference in PBLs and presented differences in TILs in different molecular subtypes (P < 0.05). In triple-negative breast cancer (TNBC), the highest percentages were observed, while in ER+/PR+ breast cancer, the lowest percentages were observed; however, these percentages were not different in different clinical stages (P > 0.05). Immunohistochemical staining showed that the expression of their ligands, PD-L1, MHC class II molecular and FGL1, was inconsistent in different molecular subtypes and clinical stages. Analysis of the functions of T cells with different phenotypes showed that the proliferation and secretion capacity of LAG3+PD-1+ T cells was obviously exhausted, with more than a two-fold of decrease compared with the groups of single positive LAG3 or PD-1 (P < 0.05). Finally, in a mouse model of TNBC, the dual blockade of LAG3 and PD-1 was indicated to achieve a better anti-tumour effect than either one alone (P < 0.05), which may provide a new strategy for the immunoregulatory treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziying Yi
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Li
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin Niu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Intensive Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Noninvasive Imaging of the Immune Checkpoint LAG-3 Using Nanobodies, from Development to Pre-Clinical Use. Biomolecules 2019; 9:biom9100548. [PMID: 31569553 PMCID: PMC6843898 DOI: 10.3390/biom9100548] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibition (ICI) is a promising cancer therapy, which has progressed rapidly from a preclinical concept to clinical implementation. Commonly considered targets in ICI are CTLA-4, PD-1/PD-L1, and LAG-3, and the list grows. As ICI is generally only beneficial for a subset of patients, there is a need to select patients that are eligible for therapy as well as to monitor therapy response. There is growing interest to do this noninvasively, by molecular imaging with target-specific tracers. To this day, noninvasive imaging has focused on CTLA-4 and PD-1/PD-L1, while there is no noninvasive tool available to accurately assess LAG-3 expression in vivo. In this proof-of-concept study, we developed nanobodies, the smallest functional fragments from camelid heavy chain-only antibodies, to noninvasively evaluate mouse LAG-3 expression using single photon emission computed tomography (SPECT)/CT imaging. The in vitro characterization of 114 nanobodies led to the selection of nine nanobodies binding to mouse LAG-3. The injection of 99mTechnetium-labeled nanobodies in healthy mice showed specific uptake in immune peripheral organs like the spleen and lymph nodes, which was not observed in LAG-3 gene knock-out mice. Moreover, nanobody uptake could be visualized using SPECT/CT and correlated to the presence of LAG-3 as assessed in flow cytometry and immunohistochemistry. SPECT/CT scans of tumor bearing mice further confirmed the diagnostic potential of the nanobodies. These findings substantiate the approach to use nanobodies as a tool to image inhibitory immune checkpoints in the tumor environment.
Collapse
|