1
|
Ahmaditabar P, Mahmoodi M, Taheri RA, Asefnejad A. Preparation and in vitro evaluation of tissue plasminogen activator-loaded nanoliposomes with anticoagulant coating. Biochim Biophys Acta Gen Subj 2024; 1868:130704. [PMID: 39178920 DOI: 10.1016/j.bbagen.2024.130704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The clinical efficacy of tissue plasminogen activator (tPA) is limited by its lack of specific delivery, requiring large therapeutic doses that increase the risk of intracerebral hemorrhage, bleeding at the surgical site, and patient mortality after angioplasty. To address these limitations, this study aimed to develop a chitosan polysulfate (CsPs)-coated liposomal formulation for the sustained release of tPA. The CsPs-coated liposomes containing tPA (Liposome-tPA/CsPs) were fabricated using the thin-film hydration technique and their properties were compared to tPA-encapsulated nanoliposomes without a coating layer (Liposome-tPA). Liposome-tPA/CsPs showed a quasi-spherical morphology with a hydrodynamic diameter of 110 nm, while Liposome-tPA had a diameter of 80 nm. The thermal analysis showed that the degradation temperature and glass transition temperature (Tg) of Liposome-tPA/CsPs were higher than that of tPA alone, indicating improved temperature stability. The in vitro release study demonstrated a slow and sustained release of tPA from the Liposome-tPA/CsPs, with a concentration of 0.02 mg/ml at 1 h and 0.23 mg/ml at 180 h. The CsPs coating layer enhanced the antibacterial and antioxidant activity of the nanoliposomes. Liposome-tPA/CsPs exhibited higher cell viability compared to Liposome-tPA. It also achieved a higher percentage of thrombolysis, with complete clot dissolution observed after 3 h of treatment. These findings suggest that the Liposome-tPA/CsPs can be a promising approach to overcome the limitations associated with the systemic administration of tPA, potentially enhancing its clinical efficacy while reducing the risk of adverse events.
Collapse
Affiliation(s)
- Parvin Ahmaditabar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran; Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ramezan Ali Taheri
- Department of Biology, Faculty of Sciences, University of Tehran, Tehran, Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Khanna V, Singh K. MicroRNAs as promising drug delivery target to ameliorate chronic obstructive pulmonary disease using nano-carriers: a comprehensive review. Mol Cell Biochem 2024:10.1007/s11010-024-05110-0. [PMID: 39254870 DOI: 10.1007/s11010-024-05110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deteriorating condition triggered by various factors, such as smoking, free radicals, and air pollution. This worsening disease is characterized by narrowing and thickening of airways, painful cough, and dyspnea. In COPD, numerous genes as well as microRNA (miRNA) play a significant role in the pathogenesis of the disease. Many in vivo and in vitro studies suggest that upregulation or suppression of certain miRNAs are effective treatment options for COPD. They have been proven to be more beneficial than the current symptomatic treatments, such as bronchodilators and corticosteroids. MiRNAs play a crucial role in immune cell development and regulate inflammatory responses in various tissues. MiRNA treatment thus allows for precision therapy with improved outcomes. Nanoparticle drug delivery systems such as polymeric nanoparticles, inorganic nanoparticles, dendrimers, polymeric micelles, and liposomes are an efficient method to ensure the biodistribution of the miRNAs to the target site. Identification of the right nanoparticle depending on the requirements and compatibility is essential for achieving maximum therapeutic effect. In this review, we offer a thorough comprehension of the pathology and genetics of COPD and the significance of miRNAs concerning various pathologies of the lung, as potential targets for treating the disease. The present review offers the latest insights into the nanoparticle drug delivery systems that can efficiently carry and deliver miRNA or antagomirs to the specific target site and hence help in effective management of COPD.
Collapse
Affiliation(s)
- Vamika Khanna
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
3
|
Damodaran A, Zachariah SM, Nair SC. Novel therapeutic approaches for the management of hepatitis infections. Ther Deliv 2024; 15:211-232. [PMID: 38410933 DOI: 10.4155/tde-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Hepatitis B virus (HBV) & hepatitis C virus (HCV) infection is a substantial reason for morbidity and mortality around the world. Chronic hepatitis B (CHB) infection is connected with an enhanced risk of liver cirrhosis, liver decompensation and hepatocellular carcinoma (HCC). Conventional therapy do face certain challenges, for example, poor tolerability and the growth of active resistance. Thus, novel treatment procedures are essential to accomplish the initiation of strong and stable antiviral immune reactions of the individuals. This review explores the current nanotechnology-based carriers for drug and vaccine delivery to treat HBV and HCV.
Collapse
Affiliation(s)
- Aswin Damodaran
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| | - Subin Mary Zachariah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| | - Sreeja Chandrasekharan Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| |
Collapse
|
4
|
Dos Santos Fonseca LM, Machado BAS, Oliveira FO, de Jesus Santos JR, da Silva JW, Hodel KVS, Rosatti BG, Pinto CD, Soares MBP. An overview on recent patents and technologies on nanoparticles for nucleic acid delivery. Expert Opin Ther Pat 2024; 34:171-186. [PMID: 38578253 DOI: 10.1080/13543776.2024.2338097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Nucleic acid-based therapeutics offer groundbreaking potential for treating genetic diseases and advancing next-generation vaccines. Despite their promise, challenges in efficient delivery persist due to the properties of nucleic acids. Nanoparticles (NPs) serve as vital carriers, facilitating effective delivery to target cells, and addressing these challenges. Understanding the global landscape of patents in this field is essential for fostering innovation and guiding decision-making for researchers, the pharmaceutical industry, and regulatory agencies. AREAS COVERED This review provides a comprehensive overview of patent compositions, applications, and manufacturing aspects concerning NPs as nucleic acid delivery systems. It delves into temporal trends, protection locations, market dynamics, and the most influential technological domains. In this work, we provide valuable insights into the advancements and potential of NP-based nucleic acid delivery systems, with a special focus on their pivotal role in advancing cutting-edge therapeutic solutions. EXPERT OPINION Investment in NPs for nucleic acid delivery has significantly surged in recent years. However, translating these therapies into clinical practice faces obstacles, including the need for robust clinical evidence, regulatory compliance, and streamlined manufacturing processes. To address these challenges, our review article summarizes recent advances. We aim to engage researchers worldwide in the development of these promising technologies.
Collapse
Affiliation(s)
- Larissa Moraes Dos Santos Fonseca
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | - Bruna Aparecida Souza Machado
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | - Fabricia Oliveira Oliveira
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | | | - Jaqueline Wang da Silva
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | - Katharine Valeria Saraiva Hodel
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | - Brisa Gonçalves Rosatti
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | | | | |
Collapse
|
5
|
Zarif B, Shabbir S, Shahid R, Noor T, Imran M. Proteosomes based on milk phospholipids and proteins to enhance the stability and bioaccessibility of β-carotene. Food Chem 2023; 429:136841. [PMID: 37459709 DOI: 10.1016/j.foodchem.2023.136841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023]
Abstract
Proteosomes (P) based on milk fat globule membrane's phospholipids (MPs), whey protein isolate (WPI) and sodium caseinate (CasNa) were developed by ultrasonication to encapsulate β-carotene. Entirely milk-ingredients based proteosomes (WPI-MPs-P and CasNa-MPs-P) revealed homogenous distribution with size diameters < 250 nm. WPI-MPs-P depicted positive ζ-potential values (+15.7 ± 0.5 mV), while CasNa-MPs-P demonstrated negative (-32.5 ± 3.4 mV) values of surface charge, respectively and hydrophilic nature of proteosomes was observed by measuring contact-angle (θ). AFM and SEM exhibited spherical to oval and slightly irregular morphology of nanocarriers. For various concentrations of β-carotene, the highest encapsulation efficiency of β-carotene was 90 ± 0.2% and 92 ± 0.8% in WPI-MPs-P and CasNa-MPs-P respectively. FTIR analyses confirmed the hydrophobic and electrostatic interactions-based encapsulation of β-carotene. Beneficial antioxidant-potential of β-carotene was retained after its encapsulation in the proteosomes. Proteosomes increased the digestive-stability (>50%) and bioaccessibility (>85%) of β-carotene. Thus, milk-ingredients based proteosomes offer a novel-strategy to develop functional dairy products to overcome widespread vitamin-A-deficiency.
Collapse
Affiliation(s)
- Bina Zarif
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Ramla Shahid
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
6
|
Pande S. Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:428-440. [PMID: 37594208 DOI: 10.1080/21691401.2023.2247036] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Liposomes are considered among the most versatile and advanced nanoparticle delivery systems used to target drugs to specific cells and tissues. Structurally, liposomes are sphere-like vesicles of phospholipid molecules that are surrounded by equal number of aqueous compartments. The spherical shell encapsulates an aqueous interior which contains substances such as peptides and proteins, hormones, enzymes, antibiotics, antifungal and anticancer agents. This structural property of liposomes makes it an important nano-carrier for drug delivery. Extrusion is one of the most frequently used technique for preparing monodisperse uni-lamellar liposomes as the technique is used to control vesicle size. The process involves passage of lipid suspension through polycarbonate membrane with a fixed pore size to produce vesicles with a diameter near the pore size of the membrane used in preparing them. An advantage of this technique is that there is no need to remove the organic solvent or detergent from the final preparation. This review focuses on composition of liposome formulation with special emphasis on factors affecting drug release and drug-loading.
Collapse
Affiliation(s)
- Shantanu Pande
- Drug Product Technical Services, Wave Life Sciences, Lexington, MA, USA
| |
Collapse
|
7
|
Putri AD, Hsu MJ, Han CL, Chao FC, Hsu CH, Lorenz CD, Hsieh CM. Differential cellular responses to FDA-approved nanomedicines: an exploration of albumin-based nanocarriers and liposomes in protein corona formation. NANOSCALE 2023; 15:17825-17838. [PMID: 37850423 DOI: 10.1039/d3nr04862d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Albumin nanoparticles (NPs) and PEGylated liposomes have garnered tremendous interest as therapeutic drug carriers due to their unique physicochemical properties. These unique properties also have significant effects on the composition and structure of the protein corona formed around these NPs in a biological environment. Herein, protein corona formation on albumin NPs and liposomes was simultaneously evaluated through in vitro and simulation studies. The sizes of both types of NPs increased with more negatively charged interfaces upon being introduced into fetal bovine serum. Gel electrophoresis and label-free quantitative proteomics were performed to identify proteins recruited to the hard corona, and fewer proteins were found in albumin NPs than in liposomes, which is in accordance with isothermal titration calorimetry. The cellular uptake efficiency of the two NPs significantly differed in different serum concentrations, which was further scrutinized by loading an anticancer compound into albumin NPs. The presence of the hard protein corona increased the cellular uptake of albumin NPs in comparison with liposomes. In our simulation study, a specific receptor present in the membrane was greatly attracted to the albumin-apolipoprotein E complex. Overall, this study not only evaluated protein corona formation on albumin NPs, but also made promising advancements toward albumin- and liposome-based therapeutic systems.
Collapse
Affiliation(s)
- Athika Darumas Putri
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
- Semarang College of Pharmaceutical Sciences (STIFAR), Semarang City, 50192, Indonesia
| | - Ming-Jen Hsu
- Department of Pharmacology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Fang-Ching Chao
- Université Paris-Saclay, CNRS UMR 8612, Institut Galien Paris-Saclay, Châtenay-Malabry, France
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Christian D Lorenz
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London WC2R 2LS, UK
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
8
|
Lehman SE, Benkstein KD, Cleveland TE, Anderson KW, Carrier MJ, Vreeland WN. Particle Metrology Approach to Understanding How Storage Conditions Affect Long-Term Liposome Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12313-12323. [PMID: 37603854 PMCID: PMC10484209 DOI: 10.1021/acs.langmuir.3c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Lipid nanoparticles are a generic type of nanomaterial with broad applicability in medicine as drug delivery vehicles. Liposomes are a subtype of lipid nanoparticles and, as a therapeutic platform, can be loaded with a genetic material or pharmaceutical agents for use as drug treatments. An open question for these types of lipid nanoparticles is what factor(s) affect the long-term stability of the particles. The stability of the particle is of great interest to understand and predict the effective shelf-life and storage requirements. In this report, we detail a one-year study of liposome stability as a function of lipid composition, buffer composition/pH, and storage temperature. This was done in aqueous solution without freezing. The effect of lipid composition is shown to be a critical factor when evaluating stability of the measured particle size and number concentration. Other factors (i.e., storage temperature and buffer pH/composition) were shown to be less critical but still have some effect. The stability of these particles informs formulation and optimal storage requirements and assists with future developmental planning of a NIST liposome-based reference material. This work also highlights the complex nature of long-term soft particle storage in biopharmaceutical applications.
Collapse
Affiliation(s)
- Sean E. Lehman
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kurt D. Benkstein
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Thomas E. Cleveland
- Biomolecular
Structure and Function Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute
for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Kyle W. Anderson
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute
for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Michael J. Carrier
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wyatt N. Vreeland
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
9
|
Ma H, Pan Z, Lai B, Zan C, Liu H. Recent Research Advances in Nano-Based Drug Delivery Systems for Local Anesthetics. Drug Des Devel Ther 2023; 17:2639-2655. [PMID: 37667787 PMCID: PMC10475288 DOI: 10.2147/dddt.s417051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 09/06/2023] Open
Abstract
From a clinical perspective, local anesthetics have rather widespread application in regional blockade for surgery, postoperative analgesia, acute/chronic pain control, and even cancer treatments. However, a number of disadvantages are associated with traditional local anesthetic agents as well as routine drug delivery administration ways, such as neurotoxicity, short half-time, and non-sustained release, thereby limiting their application in clinical practice. Successful characterization of drug delivery systems (DDSs) for individual local anesthetic agents can support to achieve more efficient drug release and prolonged duration of action with reduced systemic toxicity. Different types of DDSs involving various carriers have been examined, including micromaterials, nanomaterials, and cyclodextrin. Among them, nanotechnology-based delivery approaches have significantly developed in the last decade due to the low systemic toxicity and the greater efficacy of non-conventional local anesthetics. Multiple nanosized materials, including polymeric, lipid (solid lipid nanoparticles, nanostructured lipid carriers, and nanoemulsions), metallic, inorganic non-metallic, and hybrid nanoparticles, offer a safe, localized, and long-acting solution for pain management and tumor therapy. This review provides a brief synopsis of different nano-based DDSs for local anesthetics with variable sizes and structural morphology, such as nanocapsules and nanospheres. Recent original research utilizing nanotechnology-based delivery systems is particularly discussed, and the progress and strengths of these DDSs are highlighted. A specific focus of this review is the comparison of various nano-based DDSs for local anesthetics, which can offer additional indications for their further improvement. All in all, nano-based DDSs with unique advantages provide a novel direction for the development of safer and more effective local anesthetic formulations.
Collapse
Affiliation(s)
- He Ma
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhenxiang Pan
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bingjie Lai
- Department of Intensive Care Unit, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chunfang Zan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
10
|
Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023; 14:1059343. [PMID: 37538179 PMCID: PMC10395100 DOI: 10.3389/fphar.2023.1059343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
Various nanoparticles are used in the discovery of new nanomedicine to overcome the shortages of conventional drugs. Therefore, this article presents a comprehensive and up-to-date review of the effects of nanoparticle-based drugs in the treatment of respiratory disorders, including both basic and clinical studies. Databases, including PubMed, Web of Knowledge, and Scopus, were searched until the end of August 2022 regarding the effect of nanoparticles on respiratory diseases. As a new tool, nanomedicine offered promising applications for the treatment of pulmonary diseases. The basic composition and intrinsic characteristics of nanomaterials showed their effectiveness in treating pulmonary diseases. The efficiency of different nanomedicines has been demonstrated in experimental animal models of asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer, lung infection, and other lung disorders, confirming their function in the improvement of respiratory disorders. Various types of nanomaterials, such as carbon nanotubes, dendrimers, polymeric nanomaterials, liposomes, quantum dots, and metal and metal oxide nanoparticles, have demonstrated therapeutic effects on respiratory disorders, which may lead to new possible remedies for various respiratory illnesses that could increase drug efficacy and decrease side effects.
Collapse
Affiliation(s)
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Pardhi E, Yadav R, Chaurasiya A, Madan J, Guru SK, Singh SB, Mehra NK. Multifunctional targetable liposomal drug delivery system in the management of leukemia: Potential, opportunities, and emerging strategies. Life Sci 2023; 325:121771. [PMID: 37182551 DOI: 10.1016/j.lfs.2023.121771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The concern impeding the success of chemotherapy in leukemia treatment is descending efficacy of drugs because of multiple drug resistance (MDR). The previous failure of traditional treatment methods is primarily responsible for the present era of innovative agents to treat leukemia effectively. The treatment option is a chemotherapeutic agent in most available treatment strategies, which unfortunately leads to high unavoidable toxicities. As a result of the recent surge in marketed products, theranostic nanoparticles, i.e., multifunctional targetable liposomes (MFTL), have been approved for improved and more successful leukemia treatment that blends therapeutic and diagnostic characteristics. Since they broadly offer the required characteristics to get past the traditional/previous limitations, such as the absence of site-specific anti-cancer therapeutic delivery and ongoing real-time surveillance of the leukemia target sites while administering therapeutic activities. To prepare MFTL, suitable targeting ligands or tumor-specific antibodies are required to attach to the surface of the liposomes. This review exhaustively covered and summarized the liposomal-based formulation in leukemia treatment, emphasizing leukemia types; regulatory considerations, patents, and clinical portfolios to overcome clinical translation hurdles have all been explored.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Akash Chaurasiya
- Department of Pharmaceutics, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, District. RR, Hyderabad, India
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| |
Collapse
|
12
|
Ogunwale G, Louis H, Unimuke TO, Mathias GE, Owen AE, Edet HO, Enudi OC, Oluwasanmi EO, Adeyinka AS, Doust Mohammadi M. Interaction of 5-Fluorouracil on the Surfaces of Pristine and Functionalized Ca 12O 12 Nanocages: An Intuition from DFT. ACS OMEGA 2023; 8:13551-13568. [PMID: 37091381 PMCID: PMC10116506 DOI: 10.1021/acsomega.2c03635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
The utilization of nanostructured materials for several biomedical applications has tremendously increased over the last few decades owing to their nanosizes, porosity, large surface area, sensitivity, and efficiency as drug delivery systems. Thus, the incorporation of functionalized and pristine nanostructures for cancer therapy offers substantial prospects to curb the persistent problems of ineffective drug administration and delivery to target sites. The potential of pristine (Ca12O12) and formyl (-CHO)- and amino (-NH2)-functionalized (Ca12O12-CHO and Ca12O12-NH2) derivatives as efficient nanocarriers for 5-fluorouracil (5FU) was studied at the B3LYP-GD3(BJ)/6-311++G(d,p) theoretical level in two electronic media (gas and solvent). To effectively account for all adsorption interactions of the drug on the investigated surfaces, electronic studies as well as topological analysis based on the quantum theory of atoms in molecules (QTAIM) and noncovalent interactions were exhaustively utilized. Interestingly, the obtained results divulged that the 5FU drug interacted favorably with both Ca12O12 and its functionalized derivatives. The adsorption energies of pristine and functionalized nanostructures were calculated to be -133.4, -96.9, and -175.6 kcal/mol, respectively, for Ca12O12, Ca12O12-CHO, and Ca12O12-NH2. Also, both topological analysis and NBO stabilization analysis revealed the presence of interactions among O3-H32, O27-C24, O10-C27, and N24-H32 atoms of the drug and the surface. However, 5FU@Ca12O12-CHO molecules portrayed the least adsorption energy due to considerable destabilization of the molecular complex as revealed by the computed deformation energy. Therefore, 5FU@Ca12O12 and 5FU@Ca12O12-NH2 acted as better nanovehicles for 5FU.
Collapse
Affiliation(s)
- Goodness
J. Ogunwale
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar540221, Nigeria
- Department
of Chemistry, Faculty of Science, University
of Ibadan, Ibadan200005, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar540221, Nigeria
| | - Tomsmith O. Unimuke
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar540221, Nigeria
| | - Gideon E. Mathias
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar540221, Nigeria
| | - Aniekan E. Owen
- School
of Chemistry, University of St Andrews, St AndrewsKY16 9ST, Scotland
| | - Henry O. Edet
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar540221, Nigeria
| | - Obieze C. Enudi
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar540221, Nigeria
- Department
of Chemistry, Faculty of Science, University
of Ibadan, Ibadan200005, Nigeria
| | - Esther O. Oluwasanmi
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar540221, Nigeria
- Department
of Chemistry, Faculty of Science, University
of Ibadan, Ibadan200005, Nigeria
| | - Adedapo S. Adeyinka
- Department
of Chemical Sciences, University of Johannesburg, Johannesburg2006, South-Africa
| | | |
Collapse
|
13
|
Zhang Y, Zhou J, Wu JL, Ma JC, Wang H, Wen J, Huang S, Lee M, Bai X, Cui ZK. Intrinsic antibacterial and osteoinductive sterosomes promote infected bone healing. J Control Release 2023; 354:713-725. [PMID: 36702258 DOI: 10.1016/j.jconrel.2023.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Open fractures and internal fixation implants are often accompanied by bacterial infection, leading to osteomyelitis, characterized by intractable bone infection and sequestrum formation, and can result in lifelong disability or fatal sepsis. As common clinical treatment strategies, high-dose antibiotic application and autologous bone transplantation face the risk of recurrence and donor site injury. Herein, we designed and prepared a novel drug delivery system by rational selection of the antibacterial single-chain amphiphile (cetylpyridinium chloride, CPC) and osteoinductive sterol (20S-hydroxycholesterol, Oxy) to formulate CPC/Oxy sterosomes. We demonstrate their excellent biocompatibility and antibacterial ability through 2D and 3D settings in vitro. In addition, the osteogenic differentiation of bone marrow mesenchymal stem cells was investigated in cell monolayers and a hydrogel environment. Moreover, a rat infected critical-sized calvarial defect model was employed to illustrate the effects of antibacterial and osteogenic CPC/Oxy sterosomes in vivo. Our results showed that CPC/Oxy sterosomes not only exterminated bacterial infections, but also enhanced calvarial healing without additional antibiotics, bone formation promoters or exogenous cells. This research provides a promising and effective multifunctional sterosomal platform for the treatment of infected bone defects, with the potential to be combined with therapeutic genes, and small molecule drugs.
Collapse
Affiliation(s)
- Yiqing Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiao-Lan Wu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Chao Ma
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Jing Wen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shen Huang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min Lee
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou 342800, China.
| |
Collapse
|
14
|
Watkins SL. Current Trends and Changes in Use of Membrane Molecular Dynamics Simulations within Academia and the Pharmaceutical Industry. MEMBRANES 2023; 13:148. [PMID: 36837651 PMCID: PMC9961006 DOI: 10.3390/membranes13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
There has been an almost exponential increase in the use of molecular dynamics simulations in basic research and industry over the last 5 years, with almost a doubling in the number of publications each year. Many of these are focused on neurological membranes, and biological membranes in general, applied to the medical industry. A smaller portion have utilized membrane simulations to answer more basic questions related to the function of specific proteins, chemicals or biological processes. This review covers some newer studies, alongside studies from the last two decades, to determine changes in the field. Some of these are basic, while others are more profound, such as multi-component embedded membrane machinery. It is clear that many facets of the discipline remain the same, while the focus on and uses of the technology are broadening in scope and utilization as a general research tool. Analysis of recent literature provides an overview of the current methodologies, covers some of the recent trends or advances and tries to make predictions of the overall path membrane molecular dynamics will follow in the coming years. In general, the overview presented is geared towards the general scientific community, who may wish to introduce the use of these methodologies in light of these changes, making molecular dynamic simulations more feasible for general scientific or medical research.
Collapse
Affiliation(s)
- Stephan L Watkins
- Plant Pathology and CRGB, Oregon State University, 2701 SW Campus Way, Corvallis, OR 97331, USA
| |
Collapse
|
15
|
Al-Jipouri A, Almurisi SH, Al-Japairai K, Bakar LM, Doolaanea AA. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:318. [PMID: 36679199 PMCID: PMC9866119 DOI: 10.3390/polym15020318] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The rapid and non-invasive pulmonary drug delivery (PDD) has attracted great attention compared to the other routes. However, nanoparticle platforms, like liposomes (LPs) and extracellular vesicles (EVs), require extensive reformulation to suit the requirements of PDD. LPs are artificial vesicles composed of lipid bilayers capable of encapsulating hydrophilic and hydrophobic substances, whereas EVs are natural vesicles secreted by cells. Additionally, novel LPs-EVs hybrid vesicles may confer the best of both. The preparation methods of EVs are distinguished from LPs since they rely mainly on extraction and purification, whereas the LPs are synthesized from their basic ingredients. Similarly, drug loading methods into/onto EVs are distinguished whereby they are cell- or non-cell-based, whereas LPs are loaded via passive or active approaches. This review discusses the progress in LPs and EVs as well as hybrid vesicles with a special focus on PDD. It also provides a perspective comparison between LPs and EVs from various aspects (composition, preparation/extraction, drug loading, and large-scale manufacturing) as well as the future prospects for inhaled therapeutics. In addition, it discusses the challenges that may be encountered in scaling up the production and presents our view regarding the clinical translation of the laboratory findings into commercial products.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Latifah Munirah Bakar
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Selangor, Shah Alam 40450, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College MAIWP International (UCMI), Kuala Lumpur 68100, Malaysia
| |
Collapse
|
16
|
Yousefi M, Jafari SM, Ahangari H, Ehsani A. Application of Nanoliposomes Containing Nisin and Crocin in Milk. Adv Pharm Bull 2023; 13:134-142. [PMID: 36721817 PMCID: PMC9871285 DOI: 10.34172/apb.2023.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023] Open
Abstract
Purpose: This study aimed to investigate the effects of nanoliposomes containing crocin and nisin in milk samples as a food model. Therefore, three formulations were prepared and compared, including (1) milk samples containing free nisin and crocin, (2) samples with nanoliposomes containing nisin and crocin, and (3) nisin and crocin-loaded nanoliposomes coated with chitosan. Methods: In order to find the optimum amount of both bioactives within nanoliposomes, analyses of size, polydispersity index (PDI), zeta potential, and encapsulation efficiency were accomplished. Then, the best formulated nanoliposome was evaluated and compared with a solution containing free bioactives and nanoliposomes coated with chitosan using other experiments, including antioxidant and antibacterial activities, viscosity, colorimetric and bacterial growth. Results: The best nanoliposomal system based on the factors of size, PDI, zeta potential, and encapsulation efficiency was related for the nanocarrier with 4 mg crocin, 4.5 mg nisin, and 40 mg lecithin. Based on the results obtained, both nanoliposome (a*=5.41) and chitosancoated nanoliposome (a*=5.09) solutions could significantly (P<0.05) reduce the redness of milk induced by free bioactives (a*=12.32). However, viscosity of milk in chitosan-coated nanoliposome solution was found to be higher (3.42 cP) than other formulations (viscosity of samples with free bioactives was 1.65 cP and viscosity of samples containing nanoliposome was 1.71 cP). In addition, chitosan-coated nanoliposomes could inhibit the growth of Listeria monocytogenes stronger than other samples. Conclusion: Encapsulation of nisin and crocin in nanoliposomes showed promising results for preserving food safety and quality.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Department of Food Science and Technology, Tabriz University of Medical Sciences. Tabriz, Iran. Food and Beverage Safety Research Center, Urmia University of Medical Sciences
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology & Nutrition Research Center, Tabriz University of Medical Sciences. Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology & Nutrition Research Center, Tabriz University of Medical Sciences. Tabriz, Iran
| |
Collapse
|
17
|
Laser thrombolysis and in vitro release kinetics of tPA encapsulated in chitosan polysulfate-coated nanoliposome. Carbohydr Polym 2023; 299:120225. [PMID: 36876826 DOI: 10.1016/j.carbpol.2022.120225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
A major challenge in managing coronary artery disease is to find an effective thrombolytic therapy with minimal side effects. Laser thrombolysis is a practical procedure to remove the thrombus from inside blocked arteries, although it can cause embolism and re-occlusion of the vessel. The present study aimed to design a liposome drug delivery system for the controlled release of tissue plasminogen activator (tPA) and delivery of drug system into the thrombus by Nd:YAG laser at a wavelength of 532 nm for the treatment of arterial occlusive diseases. In this study, tPA encapsulated into the chitosan polysulfate-coated liposome (Lip/PSCS-tPA) was fabricated by a thin-film hydration technique. The particle size of Lip/tPA and Lip/PSCS-tPA was 88 and 100 nm, respectively. The release rate of tPA from Lip/PSCS-tPA was measured to be 35 % and 66 % after 24 h and 72 h, respectively. Thrombolysis through the delivery of Lip/PSCS-tPA into the thrombus during the laser irradiation was higher compared to irradiated thrombus without the nanoliposomes. The expression of IL-10 and TNF-α genes was studied by RT-PCR. The level of TNF-α for Lip/PSCS-tPA was lower than that of tPA, which can lead to improved cardiac function. Also, in this study, the thrombus dissolution process was studied using a rat model. After 4 h, the thrombus area in the femoral vein was significantly lower for groups treated with Lip/PSCS-tPA (5 %) compared to the groups treated with tPA alone (45 %). Thus, according to our results, the combination of Lip/PSCS-tPA and laser thrombolysis can be introduced as an appropriate technique for accelerating thrombolysis.
Collapse
|
18
|
Sangeeth A, Malleswarapu M, Mishra A, Gutti RK. Long Non-coding RNA Therapeutics: Recent Advances and Challenges. Curr Drug Targets 2022; 23:1457-1464. [PMID: 36121080 DOI: 10.2174/1389450123666220919122520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023]
Abstract
The discovery of the roles of RNA other than just as a messenger, such as a ribozyme, and regulatory RNAs, such as microRNA and long noncoding RNAs, is fascinating. RNA is now recognized as an important regulator involved in practically every biological process. Research in the field of non-coding RNAs, specifically microRNAs (miRNAs) and long non-coding RNAs (LncRNAs) have developed immensely over the years. Recent studies identified diverse RNAs, including non-coding RNAs such as LncRNA and their various modes of action in the cells. These RNAs are anticipated to be key targets for the treatment of various diseases since they control a broad array of biological pathways. LncRNA-targeted drug platform delivers the pharmaceutical industry a myriad of opportunities and has the potential to modulate diseases at the genetic level while also overcoming the limitations of inconsistent proteins. This article focuses on the recent advancement as well as the major challenges in the field and describes the various RNA-based therapeutics that alter the quality of healthcare for many diseases and bring personalized medicines to fruition. The article also summarizes RNA-based therapeutics that are undergoing testing in clinical trials or have been granted FDA approval.
Collapse
Affiliation(s)
- Anjali Sangeeth
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad 500046 (TS), India
| | - Mahesh Malleswarapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad 500046 (TS), India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037 (RJ), India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, (PO) Gachibowli, Hyderabad 500046 (TS), India
| |
Collapse
|
19
|
Recent developments of nanomedicine delivery systems for the treatment of pancreatic cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Wu X, Wei Z, Feng H, Chen H, Xie J, Huang Y, Wang M, Yao C, Huang J. Targeting Effect of Betulinic Acid Liposome Modified by Hyaluronic Acid on Hepatoma Cells In Vitro. J Pharm Sci 2022; 111:3047-3053. [PMID: 35779664 DOI: 10.1016/j.xphs.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022]
Abstract
Betulinic acid (BA) is a natural pentacyclic triterpenoid with broad-spectrum anticancer activity, which has great development potential as an anti-cancer drug. In this study, a novel hyaluronic acid (HA)-modified BA liposome (BA-L) was developed for use in targeted liver cancer therapy. The size, polymer dispersity index (PDI), zeta potential, and entrapment efficiency were measured. Cell viability, cell migration and clonogenicity, cellular uptake, immunohistochemistry of CD44, and protein expression of ROCK1/IP3/RAS were also investigated. BA, BA-L, and HA-BA-L had no inhibitory effect on the activity of LO2 normal hepatocytes, but they inhibited the proliferation of HepG2 and SMMC-7721 cells in a dose- and time-dependent manner, with HA-BA-L exhibiting the most prominent inhibitory effect. Compared with the BA-L group, the expression of CD44 in HepG2 cells in the HA-BA-L group was decreased. The results of WB showed that BA, BA-L, and HA-BA-L downregulated the expression of ROCK1, IP3, and RAS in HepG2 cells, and the expression level in the HA-BA-L group was significantly decreased. The easily prepared HA-BA-L was demonstrated to be an excellent CD44-mediated intracellular delivery system capable of targeting effects. Further mechanistic research revealed that the inhibition of HA-BA-L on HepG2 cells may be mediated by blocking the ROCK1/IP3/RAS signaling pathways.
Collapse
Affiliation(s)
- Xiaomei Wu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Zhumei Wei
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Hui Feng
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Hongli Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jiaxiu Xie
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Yupeng Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Mengyao Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Chanjuan Yao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jianchun Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| |
Collapse
|
21
|
Zong R, Ruan H, Zhu W, Zhang P, Feng Z, Liu C, Fan S, Liang H, Li J. Curcumin nanocrystals with tunable surface zeta potential: Preparation, characterization and antibacterial study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Rebollo R, Oyoun F, Corvis Y, El-Hammadi MM, Saubamea B, Andrieux K, Mignet N, Alhareth K. Microfluidic Manufacturing of Liposomes: Development and Optimization by Design of Experiment and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39736-39745. [PMID: 36001743 DOI: 10.1021/acsami.2c06627] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liposomes constitute the most exploited drug-nanocarrier with several liposomal drugs on the market. Microfluidic-based preparation methods stand up as a promising approach with high reproducibility and the ability to scale up. In this study, liposomes composed of DOPC, cholesterol, and DSPE-PEG 2000 with different molar ratios were fabricated using a microfluidic system. Process and conditions were optimized by applying design of experiments (DoE) principles. Furthermore, data were used to build an artificial neural network (ANN) model, to predict size and polydispersity index (PDI). Sets of runs were designed by DoE and performed on a micromixer microfluidic chip. Lipids' molar ratio and the process parameters, i.e. total flow rate (TFR) and flow rate ratio (FRR), were found to be the most influential factors on the formation of vesicles with target size and PDI under 100 nm and lower than 0.2, respectively. Size and PDI were predicted by the ANN model for 3 preparations with defined experimental conditions. The results showed no significant difference in size and PDI between the preparations and their values calculated with the ANN. In conclusion, production of optimized liposomes with high reproducibility was achieved by the application of microfluidic manufacturing processes, DoE, and Artificial Intelligence (AI). Microfluidic-based preparation methods assisted by computational tools would enable a faster development and clinical transfer of nanobased medications.
Collapse
Affiliation(s)
- René Rebollo
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| | - Feras Oyoun
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| | - Yohann Corvis
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| | - Mazen M El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, c/Prof. García González n◦2, 41012Seville, Spain
| | - Bruno Saubamea
- Université Paris Cité, US25 INSERM, UMS3612 CNRS, Plateforme Imagerie Cellulaire et Moléculaire, 75006Paris, France
| | - Karine Andrieux
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| | - Khair Alhareth
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| |
Collapse
|
23
|
Long Noncoding RNAs and Circular RNAs in the Metabolic Reprogramming of Lung Cancer: Functions, Mechanisms, and Clinical Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4802338. [PMID: 35757505 PMCID: PMC9217624 DOI: 10.1155/2022/4802338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
As key regulators of gene function, long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are generally accepted to be involved in lung cancer pathogenesis and progression. Recent research has clarified the phenomenon of metabolic reprogramming in lung cancer because of its significant role in tumor proliferation, migration, invasion, metastasis, and other malignant biological behaviors. Emerging evidence has also shown a relationship between the aberrant expression of lncRNAs and circRNAs and metabolic reprogramming in lung cancer tumorigenesis. This review provides insight regarding the roles of different lncRNAs and circRNAs in lung cancer metabolic reprogramming, by how they target transporter proteins and key enzymes in glucose, lipid, and glutamine metabolic signaling pathways. The clinical potential of lncRNAs and circRNAs as early diagnostic biomarkers and components of therapeutic strategies in lung cancer is further discussed, including current challenges in their utilization from the bench to the bedside and how to adopt a proper delivery system for their therapeutic use.
Collapse
|
24
|
High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions. Pharmaceutics 2022; 14:pharmaceutics14030668. [PMID: 35336042 PMCID: PMC8955896 DOI: 10.3390/pharmaceutics14030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
High-resolution ultrasound spectroscopy (HR-US) is a spectroscopic technique using ultrasound waves at high frequencies to investigate the structural properties of dispersed materials. This technique is able to monitor the variation of ultrasound parameters (sound speed and attenuation) due to the interaction of ultrasound waves with samples as a function of temperature and concentration. Despite being employed for the characterization of several colloidal systems, there is a lack in the literature regarding the comparison between the potential of HR-US for the determination of phospholipid thermal transitions and that of other common techniques both for loaded or unloaded liposomes. Thermal transitions of liposomes composed of pure phospholipids (dimyristoylphosphatidylcholine, DMPC; dipalmitoylphosphatidylcholine, DPPC and distearoylphosphatidylcholine, DSPC), cholesterol and their mixtures were investigated by HR-US in comparison to the most commonly employed microcalorimetry (mDSC) and dynamic light scattering (DLS). Moreover, tramadol hydrochloride, caffeine or miconazole nitrate as model drugs were loaded in DPPC liposomes to study the effect of their incorporation on thermal properties of a phospholipid bilayer. HR-US provided the determination of phospholipid sol-gel transition temperatures from both attenuation and sound speed that are comparable to those calculated by mDSC and DLS techniques for all analysed liposomal dispersions, both loaded and unloaded. Therefore, HR-US is proposed here as an alternative technique to determine the transition temperature of phospholipid membrane in liposomes.
Collapse
|
25
|
Wang Y, Xu H, Chen N, Yang J, Zhou H. LncRNA: A Potential Target for Host-Directed Therapy of Candida Infection. Pharmaceutics 2022; 14:pharmaceutics14030621. [PMID: 35335994 PMCID: PMC8954347 DOI: 10.3390/pharmaceutics14030621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Despite various drugs work against Candida, candidiasis represents clinical management challenges worldwide due to the rising incidence and recurrence rate, as well as epidemics, of new drug-resistant pathogens. Recent insights into interactions between Candida and hosts contribute to exploring novel therapeutic strategies, termed host-directed therapies (HDTs). HDTs are viable adjuncts with good efficacy for the existing standard antifungal regimens. However, HDTs induce other response unintendedly, thus requiring molecular targets with highly specificity. Long noncoding RNAs (lncRNAs) with highly specific expression patterns could affect biological processes, including the immune response. Herein, this review will summarize recent advances of HDTs based on the Candida–host interaction. Especially, the findings and application strategies of lncRNAs related to the host response are emphasized. We propose it is feasible to target lncRNAs to modulate the host defense during Candida infection, which provides a new perspective in identifying options of HDTs for candidiasis.
Collapse
|
26
|
Joy R, George J, John F. Brief Outlook on Polymeric Nanoparticles, Micelles, Niosomes, Hydrogels and Liposomes: Preparative Methods and Action. ChemistrySelect 2022. [DOI: 10.1002/slct.202104045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reshma Joy
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Jinu George
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Franklin John
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| |
Collapse
|
27
|
Liu M, Wang L, Lo Y, Shiu SCC, Kinghorn AB, Tanner JA. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022; 11:159. [PMID: 35011722 PMCID: PMC8750369 DOI: 10.3390/cells11010159] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
A wide variety of nanomaterials have emerged in recent years with advantageous properties for a plethora of therapeutic and diagnostic applications. Such applications include drug delivery, imaging, anti-cancer therapy and radiotherapy. There is a critical need for further components which can facilitate therapeutic targeting, augment their physicochemical properties, or broaden their theranostic applications. Aptamers are single-stranded nucleic acids which have been selected or evolved to bind specifically to molecules, surfaces, or cells. Aptamers can also act as direct biologic therapeutics, or in imaging and diagnostics. There is a rich field of discovery at the interdisciplinary interface between nanomaterials and aptamer science that has significant potential across biomedicine. Herein, we review recent progress in aptamer-enabled materials and discuss pending challenges for their future biomedical application.
Collapse
Affiliation(s)
- Mengping Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Lin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Young Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Andrew B. Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Julian A. Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
28
|
Sguizzato M, Pula W, Bordin A, Pagnoni A, Drechsler M, Marvelli L, Cortesi R. Manganese in Diagnostics: A Preformulatory Study. Pharmaceutics 2022; 14:pharmaceutics14010108. [PMID: 35057004 PMCID: PMC8780490 DOI: 10.3390/pharmaceutics14010108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
This investigation aims to find lipid-based nanosystems to be used as tools to deliver manganese for diagnostic purposes in multimodal imaging techniques. In particular, the study describes the production and characterization of aqueous dispersions of anionic liposomes as delivery systems for two model manganese-based compounds, namely manganese chloride and manganese acetylacetonate. Negatively charged liposomes were obtained using four different anionic surfactants, namely sodium docusate (SD), N-lauroylsarcosine (NLS), Protelan AG8 (PAG) and sodium lauroyl lactylate (SLL). Liposomes were produced by the direct hydration method followed by extrusion and characterized in terms of size, polydispersity, surface charge and stability over time. After extrusion, liposomes are homogeneous and monodispersed with an average diameter not exceeding 200 nm and a negative surface charge as confirmed by ζ potential measurement. Moreover, as indicated by atomic absorption spectroscopy analyses, the loading of manganese-based compounds was almost quantitative. Liposomes containing NLS or SLL were the most stable over time and the presence of manganese-based compounds did not affect their size distribution. Liposomes containing PAG and SD were instable and therefore discarded. The in vitro cytotoxicity of the selected anionic liposomes was evaluated by MTT assay on human keratinocyte. The obtained results highlighted that the toxicity of the formulations is dose dependent.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
| | - Anna Bordin
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
| | - Antonella Pagnoni
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy;
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Lorenza Marvelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (W.P.); (A.B.); (L.M.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
29
|
AlSadiq H, Tupally KR, Vogel R, Parekh HS, Veidt M. Multi-physics study of acoustofluidic delivery agents' clustering behavior. Phys Med Biol 2021; 67. [PMID: 34952530 DOI: 10.1088/1361-6560/ac4666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/24/2021] [Indexed: 11/12/2022]
Abstract
Acoustofluidicly manipulated microbubbles (MBs) and echogenic liposomes (ELIPs) have been suggested as drug delivery systems for the 'on demand' release of drug in target tissue. This requires a clear understanding of their behaviour during ultrasonication and after ultrasonication stops. The main focus of this study is to investigate the behaviour of MBs and ELIPs clusters after ultrasonication stops and the underlaying cause of cluster diffusion considering electrostatic repulsion, steric repulsion and Brownian motion. It also examines the capability of existing models used to predict MBs' attraction velocity due to secondary radiation force, on predicting ELIPs' attraction velocity. Tunable resistive pulse sensing (TRPS) and phase analysis light scattering (PALS) techniques were used to measure zeta potentials of the agents and the size distributions were measured using TRPS. The zeta potentials were found to be -2.43 mV and -0.62 mV for Definity™ MBs, and -3.62 mV and -2.35 mV for ELIPs using TRPS and PALS, respectively. Both agents were shown to have significant cluster formation at pressures as low as 6 kPa. Clusters of both agents were shown to diffuse as sonication stops at a rate that approximately equals the sum of the diffusion coefficients of the agents forming them. The de-clustering behaviours are due to Brownian motion as no sign of electrostatic repulsion was observed and particles movements were observed to be faster for smaller diameters. These findings are important to design and optimise effective drug delivery systems using acoustofluidically manipulated MBs and ELIPs.
Collapse
Affiliation(s)
- Hussain AlSadiq
- School of Mechanical and Mining Engineering, The University of Queensland, Saint Lucia, AUSTRALIA
| | - Karnaker Reddy Tupally
- school of Pharmacy , The University of Queensland, Saint Lucia, Queensland, 4072, AUSTRALIA
| | - Robert Vogel
- The University of Queensland, School of Mathematics and Physics, Saint Lucia, Queensland, 4067, AUSTRALIA
| | - Harendra S Parekh
- The University of Queensland, School of Pharmacy, Saint Lucia, Queensland, 4102, AUSTRALIA
| | - Martin Veidt
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Queensland, AUSTRALIA
| |
Collapse
|
30
|
Stimuli-responsive nanoliposomes as prospective nanocarriers for targeted drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|
32
|
Nwabuife JC, Pant AM, Govender T. Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Adv Drug Deliv Rev 2021; 178:113861. [PMID: 34242712 DOI: 10.1016/j.addr.2021.113861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Liposomal delivery systems have been widely explored for targeting superbugs such as S. aureus and MRSA, overcoming antimicrobial resistance associated with conventional dosage forms. They have the significant advantage of delivering hydrophilic and lipophilic antimicrobial agents, either singularly as monotherapy or in combination as combination therapy, due to their bilayers with action-site-specificity, resulting in improved targeting compared to conventional dosage forms. Herein, we present an extensive and critical review of the different liposomal delivery systems employed in the past two decades for the delivery of both antibiotics of different classes and non-antibiotic antibacterial agents, as monotherapy and combination therapy to eradicate infections caused by S. aureus and MRSA. The review also identifies future research and strategies potentiating the applications of liposomal delivery systems against S. aureus and MRSA. This review confirms the potential application of liposomal delivery systems for effective delivery and specific targeting of S. aureus and MRSA infections.
Collapse
|
33
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
34
|
Aires-Fernandes M, Eloy JO, Damiani Victorelli F, Scanavez Ferreira P, Pironi AM, Chorilli M. Reversed-phase high-performance liquid chromatography: A fast and efficient analytical method to quantify docetaxel-loaded pegylated liposomes in release study. J Sep Sci 2021; 44:3986-3995. [PMID: 34490976 DOI: 10.1002/jssc.202100382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Docetaxel is an anticancer that belongs to the family of taxanes and acts in the inhibition of cell proliferation through the polymerization of microtubules. The aim of this study was the development and validation of a fast method by reversed-phase high-performance liquid chromatography for quantitative analysis of docetaxel encapsulated in pegylated liposomes. The analytical method was validated for the following recognized specifications: system suitability, precision (repeatability and intermediate precision), linearity, accuracy, selectivity, detection and quantification limits, and robustness. The reversed phase-high-performance liquid chromatography analyses were performed at a temperature of 45°C (isocratic mode). The mobile phase was composed of acetonitrile and water (65:35, v/v) and the flow rate was fixed at 0.8 mL/min. The running time and wavelength were 8 min and 230 nm, respectively. The method was found to be linear, precise, selective, precise, robust, accurate, in the range of 1-75 μg/mL (R2 = 0.9999) and the values of detection and quantification limits were 2.35 and 7.84 μg/mL, respectively. The release rates of docetaxel in pegylated liposomes were lower compared to docetaxel in solution. The reversed phase high-performance liquid chromatography method developed proved to be adequate and can be effectively used to determine the in vitro release profile of docetaxel transported by pegylated liposomes.
Collapse
Affiliation(s)
- Mariza Aires-Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Josimar O Eloy
- College of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | - Paula Scanavez Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Andressa Maria Pironi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
35
|
Ilangala AB, Lechanteur A, Fillet M, Piel G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 2021; 167:140-158. [PMID: 34311093 DOI: 10.1016/j.ejpb.2021.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/26/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
The past decades witnessed an increasing interest in peptides as clinical therapeutics. Rightfully considered as a potential alternative for small molecule therapy, these remarkable pharmaceuticals can be structurally fine-tuned to impact properties such as high target affinity, selectivity, low immunogenicity along with satisfactory tissue penetration. Although physicochemical and pharmacokinetic challenges have mitigated, to some extent, the clinical applications of therapeutic peptides, their potential impact on modern healthcare remains encouraging. According to recent reports, there are more than 400 peptides under clinical trials and 60 were already approved for clinical use. As the demand for efficient and safer therapy became high, especially for cancers, peptides have shown some exciting developments not only due to their potent antiproliferative action but also when used as adjuvant therapies, either to decrease side effects with tumor-targeted therapy or to enhance the activity of anticancer drugs via transbarrier delivery. The first part of the present review gives an insight into challenges related to peptide product development. Both molecular and formulation approaches intended to optimize peptide's pharmaceutical properties are covered, and some of their current issues are highlighted. The second part offers a comprehensive overview of the emerging applications of therapeutic peptides in chemotherapy from bioconjugates to nanovectorized therapeutics.
Collapse
Affiliation(s)
- Ange B Ilangala
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium; Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium.
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| |
Collapse
|
36
|
In Silico Characterization of the Interaction between the PBP2a "Decoy" Protein of Resistant Staphylococcus aureus and the Monomeric Units of Eudragit E-100 and Poly(Maleic Acid- alt-Octadecene) Polymers. Polymers (Basel) 2021; 13:polym13142320. [PMID: 34301077 PMCID: PMC8309622 DOI: 10.3390/polym13142320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial treatment alternatives for methicillin-resistant Staphylococcus aureus (MRSA) are increasingly limited. MRSA strains are resistant to methicillin due to the formation of β-lactamase enzymes, as well as the acquisition of the mecA gene, which encodes the penicillin-binding protein (PBP2a) that reduces the affinity for β-lactam drugs. Previous studies have shown that the use of ampicillin-loaded nanoparticles can improve antimicrobial activity on resistant S. aureus strains. However, the biological mechanism of this effect has not yet been properly elucidated. Therefore, this short communication focused on characterizing the in silico interactions of the PBP2a membrane receptor protein from S. aureus against the monomeric units of two polymeric materials previously used in the development of different nanoparticles loaded with ampicillin. Such polymers correspond to Eudragit E-100 chloride (EuCl) and the sodium salt of poly(maleic acid-alt-octadecene) (PAM-18Na). For this, molecular coupling studies were carried out in the active site of the PBP2a protein with the monomeric units of both polymers in neutral and ionized form, as well as with ampicillin antibiotic (model β-lactam drug). The results showed that ampicillin, as well as the monomeric units of EuCl and PAM18Na, described a slight binding free energy to the PBPa2 protein. In addition, it was found that the amino acids of the active site of the PBPa2 protein have interactions of different types and intensities, suggesting, in turn, different forms of protein–substrate coupling.
Collapse
|
37
|
Mbugua SN, Njenga LW, Odhiambo RA, Wandiga SO, Onani MO. Beyond DNA-targeting in Cancer Chemotherapy. Emerging Frontiers - A Review. Curr Top Med Chem 2021; 21:28-47. [PMID: 32814532 DOI: 10.2174/1568026620666200819160213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Modern anti-cancer drugs target DNA specifically for rapid division of malignant cells. One downside of this approach is that they also target other rapidly dividing healthy cells, such as those involved in hair growth leading to serious toxic side effects and hair loss. Therefore, it would be better to develop novel agents that address cellular signaling mechanisms unique to cancerous cells, and new research is now focussing on such approaches. Although the classical chemotherapy area involving DNA as the set target continues to produce important findings, nevertheless, a distinctly discernible emerging trend is the divergence from the cisplatin operation model that uses the metal as the primary active center of the drug. Many successful anti-cancer drugs present are associated with elevated toxicity levels. Cancers also develop immunity against most therapies and the area of cancer research can, therefore, be seen as an area with a high unaddressed need. Hence, ongoing work into cancer pathogenesis is important to create accurate preclinical tests that can contribute to the development of innovative drugs to manage and treat cancer. Some of the emergent frontiers utilizing different approaches include nanoparticles delivery, use of quantum dots, metal complexes, tumor ablation, magnetic hypothermia and hyperthermia by use of Superparamagnetic Iron oxide Nanostructures, pathomics and radiomics, laser surgery and exosomes. This review summarizes these new approaches in good detail, giving critical views with necessary comparisons. It also delves into what they carry for the future, including their advantages and disadvantages.
Collapse
Affiliation(s)
- Simon N Mbugua
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Shem O Wandiga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Martin O Onani
- Organometallics and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| |
Collapse
|
38
|
Differential Metabolomics and Network Pharmacology Analysis of Silkworm Biotransformation between Mulberry Leaves and Silkworm Droppings. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8819538. [PMID: 34306157 PMCID: PMC8263261 DOI: 10.1155/2021/8819538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/29/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
Silkworm droppings are the product of mulberry leaves digested by silkworm intestines, which are an important medicinal resource in traditional Chinese medicine (TCM). The contents of total fat, fat acids, crude protein, amino acids, and secondary metabolites of obtained mulberry leaves and silkworm droppings were analyzed by HPLC, GC-MS, and UHPLC-Q-TOF MS. The target genes and enriched pathways related to significantly changed compositions between mulberry leaves and silkworm droppings were analyzed by network pharmacology. High unsaturated C18 : 3 fatty acids were transformed to low unsaturated C18 : 1 from mulberry leaves to silkworm droppings. Only lysine and 17 mini-peptides had significantly higher content in silkworm droppings than in mulberry leaves. There were 36 common target genes or the different compounds between mulberry leaves and silkworm droppings. The main pathways of mulberry leaf were enriched in antivirus and anticancer properties, while the pathways of silkworm droppings were enriched in hormone regulation and signal transduction.
Collapse
|
39
|
Fernández-Álvarez F, Caro C, García-García G, García-Martín ML, Arias JL. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer. J Mater Chem B 2021; 9:4963-4980. [PMID: 34114575 DOI: 10.1039/d1tb00354b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Maghemite/poly(d,l-lactide-co-glycolide))/chitosan (core/shell)/shell nanoparticles have been prepared reproducibly by nanoprecipitation solvent evaporation plus coacervation (production performance ≈ 45%, average size ≈ 325 nm). Transmission electron microscopy, energy dispersive X-ray spectroscopy, electrophoretic determinations, and X-ray diffraction patterns demonstrated the satisfactory embedment of iron oxide nanocores within the solid polymer matrix and the formation of an external shell of chitosan in the nanostructure. The adequate magnetic responsiveness of the nanocomposites was characterized in vitro by hysteresis cycle determinations and by visualization of the nanosystem under the influence of a 0.4 T permanent magnet. Safety and biocompatibility of the (core/shell)/shell particles were based on in vitro haemocompatibility studies and cytotoxicity tests against HFF-1 human foreskin fibroblasts and on ex vivo toxicity assessments on tissue samples from Balb/c mice. Transversal relaxivities, determined in vitro at a low magnetic field of 1.44 T, demonstrated their capability as T2 contrast agents for magnetic resonance imaging, being comparable to that of some iron oxide-based contrast agents. Heating properties were evaluated in a high frequency alternating electromagnetic gradient: a constant maximum temperature of ≈46 °C was generated within ≈50 min, while antitumour hyperthermia tests on T-84 colonic adenocarcinoma cells proved the relevant decrease in cell viability (to ≈ 39%) when treated with the nanosystem under the influence of that electromagnetic field. Finally, in vivo magnetic resonance imaging studies and ex vivo histology determinations of iron deposits postulated the efficacy of chitosan to provide long-circulating capabilities to the nanocomposites, retarding nanoparticle recognition by the mononuclear phagocyte system. To our knowledge, this is the first study describing such a type of biocompatible and long-circulating nanoplatform with promising theranostic applications (biomedical imaging and hyperthermia) against cancer.
Collapse
Affiliation(s)
- Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | | | | | | | | |
Collapse
|
40
|
Samal S, Dash P, Dash M. Drug Delivery to the Bone Microenvironment Mediated by Exosomes: An Axiom or Enigma. Int J Nanomedicine 2021; 16:3509-3540. [PMID: 34045855 PMCID: PMC8149288 DOI: 10.2147/ijn.s307843] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of bone-related disorders is causing a burden on the clinical scenario. Even though bone is one of the tissues that possess tremendous regenerative potential, certain bone anomalies need therapeutic intervention through appropriate delivery of a drug. Among several nanosystems and biologics that offer the potential to contribute towards bone healing, the exosomes from the class of extracellular vesicles are outstanding. Exosomes are extracellular nanovesicles that, apart from the various advantages, are standing out of the crowd for their ability to conduct cellular communication. The internal cargo of the exosomes is leading to its potential use in therapeutics. Exosomes are being unraveled in terms of the mechanism as well as application in targeting various diseases and tissues. Through this review, we have tried to understand and review all that is already established and the gap areas that still exist in utilizing them as drug delivery vehicles targeting the bone. The review highlights the potential of the exosomes towards their contribution to the drug delivery scenario in the bone microenvironment. A comparison of the pros and cons of exosomes with other prevalent drug delivery systems is also done. A section on the patents that have been generated so far from this field is included.
Collapse
Affiliation(s)
- Sasmita Samal
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Pratigyan Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Mamoni Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
41
|
Rocha S, Lucas M, Ribeiro D, Corvo ML, Fernandes E, Freitas M. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment. Pharmacol Res 2021; 169:105604. [PMID: 33845125 DOI: 10.1016/j.phrs.2021.105604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is one of the biggest health emergencies of the 21st century worldwide, characterized by deficiency in insulin secretion and/or action, leading to hyperglycemia. Despite the currently available antidiabetic therapeutic options, 4.2 million people died in 2019 due to diabetes. Thus, new effective interventions are required. Polyphenols are plant secondary metabolites and have been recognized for their vast number of biological activities, including potential antidiabetic effects. However, the poor bioavailability and high metabolization of polyphenols restrict their biological effects in vivo. Nanotechnology is a promising area of research to improve the therapeutic effect of several compounds. Therefore, this review provides an overview of the literature about the utility of nano-based drug delivery systems as vehicles of polyphenols in diabetes treatment. It was possible to conclude that, in general, nano-based drug delivery systems can potentiate the beneficial antidiabetic properties of polyphenols, when compared with the free compounds, opening a new field of research in diabetology.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Mariana Lucas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
42
|
Estupiñán Ó, Rendueles C, Suárez P, Rey V, Murillo D, Morís F, Gutiérrez G, Blanco-López MDC, Matos M, Rodríguez R. Nano-Encapsulation of Mithramycin in Transfersomes and Polymeric Micelles for the Treatment of Sarcomas. J Clin Med 2021; 10:jcm10071358. [PMID: 33806182 PMCID: PMC8037461 DOI: 10.3390/jcm10071358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are aggressive tumors which often show a poor response to current treatments. As a promising therapeutic alternative, we focused on mithramycin (MTM), a natural antibiotic with a promising anti-tumor activity but also a relevant systemic toxicity. Therefore, the encapsulation of MTM in nano-delivery systems may represent a way to increase its therapeutic window. Here, we designed novel transfersomes and PLGA polymeric micelles by combining different membrane components (phosphatidylcholine, Span 60, Tween 20 and cholesterol) to optimize the nanoparticle size, polydispersity index (PDI) and encapsulation efficiency (EE). Using both thin film hydration and the ethanol injection methods we obtained MTM-loaded transferosomes displaying an optimal hydrodynamic diameter of 100–130 nm and EE values higher than 50%. Additionally, we used the emulsion/solvent evaporation method to synthesize polymeric micelles with a mean size of 228 nm and a narrow PDI, capable of encapsulating MTM with EE values up to 87%. These MTM nano-delivery systems mimicked the potent anti-tumor activity of free MTM, both in adherent and cancer stem cell-enriched tumorsphere cultures of myxoid liposarcoma and chondrosarcoma models. Similarly to free MTM, nanocarrier-delivered MTM efficiently inhibits the signaling mediated by the pro-oncogenic factor SP1. In summary, we provide new formulations for the efficient encapsulation of MTM which may constitute a safer delivering alternative to be explored in future clinical uses.
Collapse
Affiliation(s)
- Óscar Estupiñán
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
| | - Claudia Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
| | - Paula Suárez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
| | | | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
- Asturias University Institute of Biotechnology, University of Oviedo, 33006 Oviedo, Spain;
| | - María del Carmen Blanco-López
- Asturias University Institute of Biotechnology, University of Oviedo, 33006 Oviedo, Spain;
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
- Asturias University Institute of Biotechnology, University of Oviedo, 33006 Oviedo, Spain;
- Correspondence: (M.M.); (R.R.)
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (M.M.); (R.R.)
| |
Collapse
|
43
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Preparation and Characterization of Two Different Liposomal Formulations with Bioactive Natural Extract for Multiple Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9030432] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Liposomes continue to attract great interest due to their increased bioavailability in the body and because the substances encapsulated are protected while maintaining their effectiveness. The aim of this study is to obtain “giant” liposomes by lipid film hydration using a preparation formula with two different phospholipids, phosphatidylcholine (PC) and phosphatidylserine (PS). Firstly, the macro- and microscopic characterization, total phenols content and antioxidant capacity of the plant Stellaria media (L.) Vill. were assessed. Then, Stellaria media (L.) Vill. extract was encapsulated in both formulations (PCE and PSE) and the liposomes were characterized according to their morphology, size distribution and Zeta potential using optical microscopy and dynamic light scattering. The encapsulation efficiency (EE%) was determined using the Folin–Ciocalteu method and the values of both formulations were compared. PC and PCE liposomes with a diameter between 712 and 1000 nm and PS and PSE liposomes with a diameter between 58 and 1000 nm were obtained. The values EE% of Stellaria media (L.) Vill. extract for PCE and PSE were 92.09% and 84.25%, respectively.
Collapse
|
45
|
Zhu M, Wang S. Functional Nucleic‐Acid‐Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Min Zhu
- Department of Pharmaceutical Engineering College of Chemistry and Chemical Engineering Central South University No. 932 South Lushan Rd Changsha Hunan 410083 P. R. China
| | - Shan Wang
- Department of Pharmaceutical Engineering College of Chemistry and Chemical Engineering Central South University No. 932 South Lushan Rd Changsha Hunan 410083 P. R. China
| |
Collapse
|
46
|
Chen Y, Li Z, Chen X, Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B 2021; 11:340-354. [PMID: 33643816 PMCID: PMC7893121 DOI: 10.1016/j.apsb.2020.10.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022] Open
Abstract
Enormous studies have corroborated that long non-coding RNAs (lncRNAs) extensively participate in crucial physiological processes such as metabolism and immunity, and are closely related to the occurrence and development of tumors, cardiovascular diseases, nervous system disorders, nephropathy, and other diseases. The application of lncRNAs as biomarkers or intervention targets can provide new insights into the diagnosis and treatment of diseases. This paper has focused on the emerging research into lncRNAs as pharmacological targets and has reviewed the transition of lncRNAs from the role of disease coding to acting as drug candidates, including the current status and progress in preclinical research. Cutting-edge strategies for lncRNA modulation have been summarized, including the sources of lncRNA-related drugs, such as genetic technology and small-molecule compounds, and related delivery methods. The current progress of clinical trials of lncRNA-targeting drugs is also discussed. This information will form a latest updated reference for research and development of lncRNA-based drugs.
Collapse
Key Words
- AD, Alzheimer's disease
- ANRIL, antisense noncoding RNA gene at the INK4 locus
- ASO, antisense oligonucleotide
- ASncmtRNA
- ASncmtRNA, antisense noncoding mitochondrial RNA
- BCAR4, breast cancer anti-estrogen resistance 4
- BDNF-AS, brain-derived neurotrophic factor antisense
- CASC9, cancer susceptibility candidate 9
- CDK, cyclin dependent kinase 1
- CHRF, cardiac hypertrophy related factor
- CRISPR, clustered regularly interspaced short palindromic repeats
- Clinical trials
- DACH1, dachshund homolog 1
- DANCR, differentiation antagonizing non-protein coding RNA
- DKD, diabetic kidney disease
- DPF, diphenyl furan
- Delivery
- EBF3-AS, early B cell factor 3-antisense
- ENE, element for nuclear expression
- Erbb4-IR, Erb-B2 receptor tyrosine kinase 4-immunoreactivity
- FDA, U.S. Food and Drug Administration
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GAS5, growth arrest specific 5
- Gene therapy
- HISLA, HIF-1α-stabilizing long noncoding RNA
- HOTAIR, HOX transcript antisense intergenic RNA
- HULC, highly upregulated in liver cancer
- LIPCAR, long intergenic noncoding RNA predicting cardiac remodeling
- LNAs, locked nucleic acids
- LncRNAs
- MALAT1, metastasis associated lung adenocarcinoma transcript 1
- MEG3, maternally expressed gene 3
- MHRT, myosin heavy chain associated RNA transcripts
- MM, multiple myeloma
- NEAT1, nuclear enriched abundant transcript 1
- NKILA, NF-kappaB interacting lncRNA
- NPs, nanoparticles
- Norad, non-coding RNA activated by DNA damage
- OIP5-AS1, opa-interacting protein 5 antisense transcript 1
- PD, Parkinson's disease
- PEG, polyethylene glycol
- PNAs, peptide nucleic acids
- PTO, phosphorothioate
- PVT1, plasmacytoma variant translocation 1
- RGD, arginine-glycine-aspartic acid peptide
- RISC, RNA-induced silencing complex
- SALRNA1, senescence associated long non-coding RNA 1
- SNHG1, small nucleolar RNA host gene 1
- Small molecules
- SncmtRNA, sense noncoding mitochondrial RNA
- THRIL, TNF and HNRNPL related immunoregulatory
- TTTY15, testis-specific transcript, Y-linked 15
- TUG1, taurine-upregulated gene 1
- TWIST1, twist family BHLH transcription factor 1
- Targeted drug
- TncRNA, trophoblast-derived noncoding RNA
- Translational medicine
- UCA1, urothelial carcinoma-associated 1
- UTF1, undifferentiated transcription factor 1
- XIST, X-inactive specific transcript
- lincRNA-p21, long intergenic noncoding RNA p21
- lncRNAs, long non-coding RNAs
- mtlncRNA, mitochondrial long noncoding RNA
- pHLIP, pH-low insertion peptide
- sgRNA, single guide RNA
- siRNAs, small interfering RNAs
Collapse
|
47
|
Wongkhieo S, Numdee K, Lam EWF, Choowongkomon K, Kongsema M, Khongkow M. Liposomal Thiostrepton Formulation and Its Effect on Breast Cancer Growth Inhibition. J Pharm Sci 2021; 110:2508-2516. [PMID: 33515584 DOI: 10.1016/j.xphs.2021.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
Forkhead box M1 (FOXM1) is known to play a role in breast cancer progression. FOXM1 inhibition becomes one of the strategies in developing the novel cancer therapy. Recently, thiostrepton has been recognized as a potent FOXM1 inhibitor. To improve its potential, we aimed to develop a nanodelivery system for thiostrepton. Here, liposome-encapsulated thiostrepton (TSLP) was developed. Physiochemical properties were characterized by TEM and dynamic light scattering technique. The biological activities were also evaluated, by cellular internalization, MTT assay, spheroid formation assay and RT-PCR. The result showed that the range sizes of TSLP were 152 ± 2 nm, polydispersity index (PdI) of 0.23 ± 0.02 and zeta potential of -20.2 ± 0.1 mV. As expected, TSLP showed a higher potential in reducing FOXM1 levels in MCF-7 cells than free thiostrepton. Additionally, TSLP significantly improved the efficiently and specificity of thiostrepton in reducing cell viability of MCF-7, but not of the fibroblast (HDFn) cells. Interestingly, TSLP had an ability to induce MCF-7 cell death in both 2D monolayer and 3D spheroid culture. In conclusions, TSLP could possibly be one of the potential developments using nano-delivery system to improve abilities and specificity of thiostrepton in breast cancer cell inhibition and death inducing, with decreasing non-specific toxicity.
Collapse
Affiliation(s)
- Sudtirak Wongkhieo
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Katawut Numdee
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Eric W F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Mesayamas Kongsema
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand.
| |
Collapse
|
48
|
Wang J, Qiao W, Li X, Zhao H, Zhang H, Dong A, Yang X. A directed co-assembly of herbal small molecules into carrier-free nanodrugs for enhanced synergistic antitumor efficacy. J Mater Chem B 2021; 9:1040-1048. [PMID: 33392615 DOI: 10.1039/d0tb02071k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carrier-free nanomedicines without structural modification are attractive for the development of natural small molecules (NSMs) and biomedical applications. Moreover, the combination of NSMs is expected to obtain nanomedicines with high efficacy and low side effects due to their inherent pharmacological activities and health benefits. However, poor water solubility and low bioavailability of NSMs limit their wider biomedical and clinical applications. In this study, we revealed the co-assembly properties of pentacyclic triterpenoids and constructed a series of carrier-free nanodrugs, which are co-assembled nanoparticles (NPs) formed by the combination of two NSMs via a supramolecular assembly strategy. Experimental work and simulation studies were combined to reveal the co-assembly mechanism of non-covalent interactions between NSMs. Not only do co-assembled NPs have rapid cellular uptake ability and passive targeting tumor ability based on the EPR effect, but also their constituent units could arrest the cell cycle at different stages of tumor cells and induce apoptosis, showing synergistic anti-tumor effects (CI < 0.7). Compared with self-assembled NPs and positive control, co-assembled NPs show the strongest therapeutic effect in vivo. Importantly, the co-assembled NPs highlight the unique advantages of NSMs in terms of biosafety and health benefits, and systemic toxicity and histological examination confirm that co-assembled NPs have reliable biosafety, and no side effects and nano toxicity risks were observed.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang 150001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ansari MA, Khan FB, Safdari HA, Almatroudi A, Alzohairy MA, Safdari M, Amirizadeh M, Rehman S, Equbal MJ, Hoque M. Prospective therapeutic potential of Tanshinone IIA: An updated overview. Pharmacol Res 2020; 164:105364. [PMID: 33285229 DOI: 10.1016/j.phrs.2020.105364] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 01/03/2023]
Abstract
In the past decades, the branch of complementary and alternative medicine based therapeutics has gained considerable attention worldwide. Pharmacological efficacy of various traditional medicinal plants, their products and/or product derivatives have been explored on an increasing scale. Tanshinone IIA (Tan IIA) is a pharmacologically active lipophilic component of Salvia miltiorrhiza extract. Tan IIA shares a history of high repute in Traditional Chinese Medicine. Reckoning with these, the present review collates the pharmacological properties of Tan IIA with a special emphasis on its therapeutic potential against diverse diseases including cardiovascular diseases, cerebrovascular diseases, cancer, diabetes, obesity and neurogenerative diseases. Further, possible applications of various therapeutic preparations of Tan IIA were discussed with special emphasis on nano-based drug delivery formulations. Considering the tremendous advancement in the field of nanomedicine and the therapeutic potential of Tan IIA, the convergence of these two aspects can be foreseen with great promise in clinical application.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Farheen Badrealam Khan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Haaris Ahsan Safdari
- New Technology Center, University of Warsaw, Stefana Banacha 2c, 02-097 Warszawa, Poland
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammadreza Safdari
- Imam Ali Hospital, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of Pharmacy, University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Mohammad Javed Equbal
- Biomedical Institute for Regenerative Research, Texas A&M University Commerce, Commerce, TX 75429, United States.
| | - Mehboob Hoque
- Department of Biological Sciences, Aliah University, Kolkata 700 160, India.
| |
Collapse
|
50
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|