1
|
Xu X, Jin K, Xu X, Yang Y, Zhou B. Expression and prognostic value of cell-cycle-associated genes in lung squamous cell carcinoma. J Gene Med 2024; 26:e3735. [PMID: 39171952 DOI: 10.1002/jgm.3735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Lung cancer continues to be a prevalent cause of cancer-related deaths worldwide, with lung squamous carcinoma (LUSC) being a significant subtype characterized by comparatively low survival rates. Extensive molecular studies on LUSC have been conducted; however, the clinical importance of cell-cycle-associated genes has rarely been examined. This study aimed to investigate the relationship between these genes and LUSC. METHODS The expression trends of genes related to the cell cycle in a group of patients with LUSC were analyzed. Clinical information and mRNA expression data were obtained from The Cancer Genome Atlas via cBioportal. Multiple analyses have been performed to investigate the association between these genes and LUSC. RESULTS Three clusters were identified based on the mRNA expression of 124 cell cycle-associated genes. Cluster 3 exhibited the worst prognosis. A comparative analysis showed that nine expressed genes differed distinctly among all the clusters. Among these nine genes, elevated expression of CDK4 was strongly associated with positive prognosis. Furthermore, the expression of ANAPC11, ANAPC5, and ORC4 correlated with the advancement of LUSC pathological stages. CONCLUSIONS Gene expression profiles associated with the cell cycle across various LUSC subtypes were identified, highlighting that specific genes are related to prognosis and disease stages. Based on these results, new prognostic strategies, patient stratification, and targeted therapy trials have been conducted for LUSC.
Collapse
Affiliation(s)
- Xinnan Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaiqi Jin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxiong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Goto Y, Koshizuka K, Ando T, Izumi H, Wu X, Sato K, Ishikawa T, Ford K, Feng X, Wang Z, Arang N, Allevato MM, Kishore A, Mali P, Gutkind JS. A Kinome-Wide Synthetic Lethal CRISPR/Cas9 Screen Reveals That mTOR Inhibition Prevents Adaptive Resistance to CDK4/CDK6 Blockade in HNSCC. CANCER RESEARCH COMMUNICATIONS 2024; 4:1850-1862. [PMID: 38954773 PMCID: PMC11284272 DOI: 10.1158/2767-9764.crc-24-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The comprehensive genomic analysis of the head and neck squamous cell carcinoma (HNSCC) oncogenome revealed the frequent loss of p16INK4A (CDKN2A) and amplification of cyclin D1 genes in most human papillomavirus-negative HNSCC lesions. However, cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have shown modest effects in the clinic. The aberrant activation of the PI3K/mTOR pathway is highly prevalent in HNSCC, and recent clinical trials have shown promising clinical efficacy of mTOR inhibitors (mTORi) in the neoadjuvant and adjuvant settings but not in patients with advanced HNSCC. By implementing a kinome-wide CRISPR/Cas9 screen, we identified cell-cycle inhibition as a synthetic lethal target for mTORis. A combination of mTORi and palbociclib, a CDK4/6-specific inhibitor, showed strong synergism in HNSCC-derived cells in vitro and in vivo. Remarkably, we found that an adaptive increase in cyclin E1 (CCNE1) expression upon palbociclib treatment underlies the rapid acquired resistance to this CDK4/6 inhibitor. Mechanistically, mTORi inhibits the formation of eIF4G-CCNE1 mRNA complexes, with the consequent reduction in mRNA translation and CCNE1 protein expression. Our findings suggest that mTORi reverts the adaptive resistance to palbociclib. This provides a multimodal therapeutic option for HNSCC by cotargeting mTOR and CDK4/6, which in turn may halt the emergence of palbociclib resistance. SIGNIFICANCE A kinome-wide CRISPR/Cas9 screen identified cell-cycle inhibition as a synthetic lethal target of mTORis. A combination of mTORi and palbociclib, a CDK4/6-specific inhibitor, showed strong synergistic effects in HNSCC. Mechanistically, mTORis inhibited palbociclib-induced increase in CCNE1.
Collapse
Affiliation(s)
- Yusuke Goto
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Keiichi Koshizuka
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Toshinori Ando
- Moores Cancer Center, University of California San Diego, La Jolla, California.
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Hiroki Izumi
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Kuniaki Sato
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Tomohiko Ishikawa
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Kyle Ford
- Department of Bioengineering, University of California San Diego, San Diego, California.
| | - Xiaodong Feng
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Nadia Arang
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Michael M. Allevato
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Ayush Kishore
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, San Diego, California.
| | - J. Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
3
|
Dong L, Liu C, Sun H, Wang M, Sun M, Zheng J, Yu X, Shi R, Wang B, Zhou Q, Chen Z, Xing B, Wang Y, Yao X, Mei M, Ren Y, Zhou X. Targeting STAT3 potentiates CDK4/6 inhibitors therapy in head and neck squamous cell carcinoma. Cancer Lett 2024; 593:216956. [PMID: 38735381 DOI: 10.1016/j.canlet.2024.216956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.
Collapse
Affiliation(s)
- Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Haoyang Sun
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mo Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Yu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Rong Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
4
|
Lv S, Yang J, Lin J, Huang X, Zhao H, Zhao C, Yang L. CDK4/6 inhibitors in lung cancer: current practice and future directions. Eur Respir Rev 2024; 33:230145. [PMID: 38355149 PMCID: PMC10865100 DOI: 10.1183/16000617.0145-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/11/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and ∼85% of lung cancers are classified as nonsmall cell lung cancer (NSCLC). These malignancies can proliferate indefinitely, in part due to dysregulation of the cell cycle and the resulting abnormal cell growth. The specific activation of cyclin-dependent kinases 4 and 6 (CDK4/6) is closely linked to tumour proliferation. Approximately 80% of human tumours exhibit abnormalities in the cyclin D-CDK4/6-INK4-RB pathway. Specifically, CDK4/6 inhibitors either as monotherapy or combination therapy have been investigated in pre-clinical and clinical studies for the treatment of NSCLC, and promising results have been achieved. This review article focuses on research regarding the use of CDK4/6 inhibitors in NSCLC, including the characteristics and mechanisms of action of approved drugs and progress of pre-clinical and clinical research.
Collapse
Affiliation(s)
- Shuoshuo Lv
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jie Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Zhang C, Zhou F, Zou J, Fang Y, Liu Y, Li L, Hou J, Wang G, Wang H, Lai X, Xie L, Jiang J, Yang C, Huang Y, Chen Y, Zhang H, Li Y. Clinical considerations of CDK4/6 inhibitors in HER2 positive breast cancer. Front Oncol 2024; 13:1322078. [PMID: 38293701 PMCID: PMC10824891 DOI: 10.3389/fonc.2023.1322078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Deregulation of cell cycles can result in a variety of cancers, including breast cancer (BC). In fact, abnormal regulation of cell cycle pathways is often observed in breast cancer, leading to malignant cell proliferation. CDK4/6 inhibitors (CDK4/6i) can block the G1 cell cycle through the cyclin D-cyclin dependent kinase 4/6-inhibitor of CDK4-retinoblastoma (cyclinD-CDK4/6-INK4-RB) pathway, thus blocking the proliferation of invasive cells, showing great therapeutic potential to inhibit the spread of BC. So far, three FDA-approved drugs have been shown to be effective in the management of advanced hormone receptor positive (HR+) BC: palbociclib, abemaciclib, and ribociclib. The combination strategy of CDK4/6i and endocrine therapy (ET) has become the standard therapeutic regimen and is increasingly applied to advanced BC patients. The present study aims to clarify whether CDK4/6i can also achieve a certain therapeutic effect on Human epidermal growth factor receptor 2 positive (HER2+) BC. Studies of CDK4/6i are not limited to patients with estrogen receptor positive/human epidermal growth factor receptor 2 negative (ER+/HER2-) advanced BC, but have also expanded to other types of BC. Several pre-clinical and clinical trials have demonstrated the potential of CDK4/6i in treating HER2+ BC. Therefore, this review summarizes the current knowledge and recent findings on the use of CDK4/6i in this type of BC, and provides ideas for the discovery of new treatment modalities.
Collapse
Affiliation(s)
- Cui Zhang
- Zunyi Medical University, Zunyi, China
| | - Fulin Zhou
- Maternal and Child Health Care Hospital of Guiyang City, Guiyang, China
| | - Jiali Zou
- Maternal and Child Health Care Hospital of Guiyang City, Guiyang, China
| | - Yanman Fang
- Maternal and Child Health Care Hospital of Guiyang City, Guiyang, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Libo Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guanghui Wang
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Hua Wang
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xiaolian Lai
- Department of Digestive, People’s Hospital of Songtao Miao Autonomous County, Tongren, China
| | - Lu Xie
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jia Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Can Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | | | | - Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
6
|
Liu H, Zhang F, Li Z. Expression and significance of cyclin D1, cyclin-dependent kinase 4 and cyclin-dependent kinase inhibitor P27 in patients with non-neoplastic epithelial disorders of the vulva. Exp Ther Med 2023; 26:356. [PMID: 37324513 PMCID: PMC10265714 DOI: 10.3892/etm.2023.12055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/23/2023] [Indexed: 06/17/2023] Open
Abstract
Non-neoplastic epithelial disorders of the vulva (NNEDV) are prevalent and refractory gynecological diseases. However, the underlying pathogenesis of these diseases remain unclear. The present study aimed to investigate the expression and significance of cyclin D1, cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase inhibitor P27 (P27) in patients with NNEDV and provide a reference for clinical diagnosis and treatment. Normal vulvar skin samples from patients with perineum repair (control group, n=20) and skin samples from the vulvar lesions of patients with NNEDV (NNEDV group, n=36) were collected. Expression levels of cyclin D1, CDK4 and P27 were assessed in the samples using immunohistochemistry. The expression of each protein was evaluated based on the mean optical density (MOD). The MODs of cyclin D1 and CDK4 were significantly higher in samples of the three pathological types of NNEDV, namely squamous hyperplasia (SH), lichen sclerosus (LS) and mixed SH and LS lesions, compared with those of the control group. The MOD of P27 was lower in samples of the three pathological types of NNEDV than in the control group, although the difference was not statistically significant. No significant differences in the MOD of cyclin D1, CDK4 and P27 were detected among the three pathological types of NNEDV. The ratios of the MOD of cyclin D1 and CDK4 in the prickle cell layer to those in the basal cell layer were significantly higher in the NNEDV group than in the control group. However, the ratio of the MOD of P27 in the prickle cell layer to that in the basal cell layer exhibited no significant difference between the NNEDV and control groups. NNEDV has the potential for malignant transformation. The occurrence and development of NNEDV may be associated with the acceleration of cell proliferation, in which cyclin D1, CDK4 and P27 contribute to regulation of the cell cycle. Therefore, cyclin D1, CDK4 and P27 may be potential targets in the development of new clinical therapeutic drugs for patients with NNEDV.
Collapse
Affiliation(s)
- Huamei Liu
- Department of Gynecology and Obstetrics, Xiangyang Hospital of Integrated Chinese and Western Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Fan Zhang
- Department of Gynecology and Obstetrics, Xiangyang Hospital of Integrated Chinese and Western Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Zongheng Li
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
7
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Guscetti F, Nassiri S, Beebe E, Rito Brandao I, Graf R, Markkanen E. Molecular homology between canine spontaneous oral squamous cell carcinomas and human head-and-neck squamous cell carcinomas reveals disease drivers and therapeutic vulnerabilities. Neoplasia 2020; 22:778-788. [PMID: 33142242 PMCID: PMC7642746 DOI: 10.1016/j.neo.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
Spontaneously occurring canine oral squamous cell carcinomas (COSCC) are viewed as a useful model for human head and neck squamous cell carcinomas (HNSCC). To date however, the molecular basis of COSCC remains poorly understood. To identify changes pertinent to cancer cells in COSCC, we specifically analyzed tumor cells and matched normal epithelium from clinical formalin-fixed paraffin-embedded specimens using laser-capture-microdissection coupled with RNA-sequencing (RNAseq). Our results identify strong contributions of epithelial-to-mesenchymal transition (EMT), classical tumor-promoting (such as E2F, KRAS, MYC, mTORC1, and TGFB1 signaling) and immune-related pathways in the tumor epithelium of COSCC. Comparative analyses of COSCC with 43 paired tumor/normal HNSCC from The Cancer Genome Atlas revealed a high homology in transcriptional reprogramming, and identified processes associated with cell cycle progression, immune processes, and loss of cellular differentiation as likely central drivers of the disease. Similar to HNSCC, our analyses suggested a ZEB2-driven partial EMT in COSCC and identified selective upregulation of KRT14 and KRT17 in COSCC. Beyond homology in transcriptional signatures, we also found therapeutic vulnerabilities strongly conserved between the species: these included increased expression of PD-L1 and CTLA-4, coinciding with EMT and revealing the potential for immune checkpoint therapies, and overexpression of CDK4/6 that sensitized COSCC to treatment with palbociclib. In summary, our data significantly extend the current knowledge of molecular aberrations in COSCC and underline the potential of spontaneous COSCC as a model for HNSCC to interrogate therapeutic vulnerabilities and support translation of novel therapies from bench to bedside.
Collapse
Affiliation(s)
- Franco Guscetti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Inês Rito Brandao
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Ramona Graf
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
CDK 4/6 Inhibition Overcomes Acquired and Inherent Resistance to PI3Kα Inhibition in Pre-Clinical Models of Head and Neck Squamous Cell Carcinoma. J Clin Med 2020; 9:jcm9103214. [PMID: 33036331 PMCID: PMC7601167 DOI: 10.3390/jcm9103214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Activating alterations in PIK3CA, the gene coding for the catalytic subunit of phosphoinositide-3-kinase (PI3K), are prevalent in head and neck squamous cell carcinoma (HNSCC) and thought to be one of the main drivers of these tumors. However, early clinical trials on PI3K inhibitors (PI3Ki) have been disappointing due to the limited durability of the activity of these drugs. To investigate the resistance mechanisms to PI3Ki and attempt to overcome them, we conducted a molecular-based study using both HNSCC cell lines and patient-derived xenografts (PDXs). We sought to simulate and dissect the molecular pathways that come into play in PIK3CA-altered HNSCC treated with isoform-specific PI3Ki (BYL719, GDC0032). In vitro assays of cell viability and protein expression indicate that activation of the mTOR and cyclin D1 pathways is associated with resistance to PI3Ki. Specifically, in BYL719-resistant cells, BYL719 treatment did not induce pS6 and pRB inhibition as detected in BYL719-sensitive cells. By combining PI3Ki with either mammalian target of rapamycin complex 1 (mTORC1) or cyclin D1 kinase (CDK) 4/6 specific inhibitors (RAD001 and abemaciclib, respectively), we were able to overcome the acquired resistance. Furthermore, we found that PI3Ki and CDK 4/6 inhibitors have a synergistic anti-tumor effect when combined in human papillomavirus (HPV)-negative/PIK3CA-WT tumors. These findings provide a rationale for combining PI3Ki and CDK 4/6 inhibitors to enhance anti-tumor efficacy in HNSCC patients.
Collapse
|
10
|
Liu Y, Zhao R, Fang S, Li Q, Jin Y, Liu B. Abemaciclib sensitizes HPV-negative cervical cancer to chemotherapy via specifically suppressing CDK4/6-Rb-E2F and mTOR pathways. Fundam Clin Pharmacol 2020; 35:156-164. [PMID: 32446293 DOI: 10.1111/fcp.12574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Cervical cancer is the second most common malignancy in women, and the novel therapeutic treatment is needed. Abemaciclib is a FDA-approved drug for breast cancer treatment. In this work, we identified that abemaciclib has potent anti-cervical cancer activity. We demonstrate that abemaciclib is the most effective drug against human papillomavirus (HPV)-negative cervical cancer cells compared to ribociclib and palbociclib, with its IC50 at nanomolar concentration range. This is achieved by the inhibition of proliferation and induction of apoptosis, through specifically suppressing CDK4/6-Rb-E2F and mTOR pathways by abemaciclib in HPV-negative cervical cancer cells. Of note, the combination of abemaciclib with paclitaxel and cisplatin at sublethal concentration results in much greater efficacy than chemotherapy alone. In addition, we confirm the efficacy of abemaciclib and its combination with paclitaxel or cisplatin at the doses that are not toxic to mice in HPV-negative cervical cancer xenograft mouse model. Interestingly, we show that abemaciclib and other CDK4/6 inhibitors are not effective in targeting HPV-positive cervical cancer cells, and this is likely to be associated with the high p16 and low Rb expression in HPV-positive cervical cancer cells. Our work is the first to provide the preclinical evidence to demonstrate the potential of abemaciclib for the treatment of HPV-negative cervical cancer. The mechanism analysis highlights the therapeutic value of inhibiting CDK4/6 in HPV-negative but not HPV-positive cervical cancer.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Runsheng Zhao
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Shanshan Fang
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Quan Li
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Yiqiang Jin
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Bo Liu
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| |
Collapse
|
11
|
A Regulatory Noncoding RNA, nc886, Suppresses Esophageal Cancer by Inhibiting the AKT Pathway and Cell Cycle Progression. Cells 2020; 9:cells9040801. [PMID: 32225025 PMCID: PMC7226379 DOI: 10.3390/cells9040801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
nc886 is a regulatory non-coding RNA (ncRNA) whose expression is frequently silenced in malignancies. In the case of esophageal squamous cell carcinoma (ESCC), nc886 silencing is associated with shorter survival of patients, suggesting nc886’s tumor suppressor role in ESCC. However, this observation has not been complemented by an in-detail study about nc886’s impact on gene expression and cellular phenotypes. Here we have shown that nc886 inhibits AKT, a key protein in a renowned pro-survival pathway in cancer. nc886-silenced cells (nc886− cells) have activated AKT and altered expression of cell cycle genes. nc886− cells tend to have lower expression of CDKN2A and CDKN2C, both of which are inhibitors for cyclin-dependent kinase (CDK), and higher expression of CDK4 than nc886-expressing cells. As a result, nc886− cells are hyperactive in the progression of the G1 to S cell cycle phase, proliferate faster, and are more sensitive to palbociclib, which is a cancer therapeutic drug that targets CDK4/6. Experimentally by nc886 expression and knockdown, we have determined the AKT target genes and cell cycle genes that are controlled by nc886 (nc886-associated gene sets). These gene sets, in combination with pathologic staging and nc886 expression levels, are a vastly superior predictor for the survival of 108 ESCC patients. In summary, our study has elucidated in ESCC how nc886 inhibits cell proliferation to explain its tumor suppressor role and identified gene sets that are of future clinical utility, by predicting patient survival and responsiveness to a therapeutic drug.
Collapse
|
12
|
Tang C, Lin L, Zhou W, Liu X, Fu Y, Zhang L, Li L, Wang X, Zhao L, Liang J. CDK6 inhibits lymphoid cell infiltration and represents a prognostic marker in HPV+ squamous cell carcinoma of head and neck. Chin J Cancer Res 2020; 31:901-909. [PMID: 31949392 PMCID: PMC6955169 DOI: 10.21147/j.issn.1000-9604.2019.06.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective We investigated the correlations between cyclin-dependent kinase 4/6 (CDK4/6) levels and human papillomavirus (HPV) infection state in head and neck squamous cell cancer (HNSCC). The aim was to explore the potential value of CDK4/6 inhibitors in the treatment of HNSCC. Methods Multiomic sequencing data for HNSCC were obtained from The Cancer Genome Atlas (TCGA), and the mRNA levels and copy number variations (CNVs) of CDK4 and CDK6 were strictly analyzed. Overall survival (OS) curves were produced using the Kaplan-Meier method, and survival differences between groups were assessed by the log-rank test. Next, gene set enrichment analysis (GSEA) was applied to interrogate CDK4/6-associated molecular pathways in HPV-positive (HPV+) and HPV-negative (HPV−) HNSCC. Last, lymphoid cell infiltrates in each type of HNSCC were explored, and the correlations between CDK4/6 expression and lymphoid infiltrates were explored by Tumor Immune Estimation Resource (TIMER) analysis. Results Overexpression of either CDK6 or CDK4 was not a relevant factor for OS in HPV− HNSCC (CDK6: top 40%vs. bottom 40%, P=0.885; CDK4: top 40% vs. bottom 40%, P=0.267). In HPV+ HNSCC, CDK6 but not CDK4 was a relevant factor for OS (CDK6: top 40% vs. bottom 40%, P=0.002; CDK4: top 40% vs. bottom 40%, P=0.452). GSEA found that overexpressed CDK6 in HPV+ HNSCC inhibited pathways involved in the tumor immune response, suggesting its roles in antitumor immunity. TIMER analysis results revealed that CDK6 but not CDK4 accumulation was negatively correlated with the number of tumor-infiltrating lymphocytes specific for HPV+ HNSCC, which led to tumor response suppression.
Conclusions CDK6, but not CDK4, is a poor prognostic marker specific in HPV+ HNSCC patients. Overexpressed CDK6 might stimulate tumor progression by suppressing lymphocytes infiltration independent of its kinase activity. Only abrogating its kinase activity using current CDK4/6 inhibitors was not enough to block its tumor promotion function.
Collapse
Affiliation(s)
- Chuanhao Tang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| | - Li Lin
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| | - Wei Zhou
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| | - Xiang Liu
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| | - Yali Fu
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| | - Lingling Zhang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| | - Li Li
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| | - Xiangyi Wang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| | - Libo Zhao
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| | - Jun Liang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
13
|
Yan T, Cui H, Zhou Y, Yang B, Kong P, Zhang Y, Liu Y, Wang B, Cheng Y, Li J, Guo S, Xu E, Liu H, Cheng C, Zhang L, Chen L, Zhuang X, Qian Y, Yang J, Ma Y, Li H, Wang F, Liu J, Liu X, Su D, Wang Y, Sun R, Guo S, Li Y, Cheng X, Liu Z, Zhan Q, Cui Y. Multi-region sequencing unveils novel actionable targets and spatial heterogeneity in esophageal squamous cell carcinoma. Nat Commun 2019; 10:1670. [PMID: 30975989 PMCID: PMC6459928 DOI: 10.1038/s41467-019-09255-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) ranks fourth among cancer-related deaths in China due to the lack of actionable molecules. We performed whole-exome and T-cell receptor (TCR) repertoire sequencing on multi-regional tumors, normal tissues and blood samples from 39 ESCC patients. The data revealed 12.8% of ERBB4 mutations at patient level and functional study supported its oncogenic role. 18% of patients with early BRCA1/2 variants were associated with high-level contribution of signature 3, which was validated in an independent large cohort (n = 508). Furthermore, knockdown of BRCA1/2 dramatically increased sensitivity to cisplatin in ESCC cells. 5% of patients harbored focal high-level amplification of CD274 that led to massive expression of PD-L1, and might be more sensitive to immune checkpoint blockade. Finally, we found a tight correlation between genomic and TCR repertoire intra-tumor heterogeneity (ITH). Collectively, we reveal high-level ITH in ESCC, identify several potential actionable targets and may provide novel insight into ESCC treatment. Esophageal squamous cell carcinoma (ESCC) is highly prevalent in China. Here, the authors carry out multi-region sampling of Chinese ESCC samples, and find recurrent ERBB4 mutations, BRCA1/2 variants, and amplification of CD274; together with high levels of genomic and T-cell receptor heterogeneity.
Collapse
Affiliation(s)
- Ting Yan
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China.,Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Heyang Cui
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China.,Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Yong Zhou
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China.,Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Bin Yang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China.,Department of Tumor Surgery, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Pengzhou Kong
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Yingchun Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Yiqian Liu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Bin Wang
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China.,College of Information and Computer, Taiyuan University of Technology, 030001, Taiyuan, PR China
| | - Yikun Cheng
- College of Letter & Science, University of California Berkeley, Berkeley, CA, 94704, USA
| | - Jiayi Li
- Anglo-Chinese School (Independent), Singapore, 139650, Singapore
| | - Shixing Guo
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Enwei Xu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China.,Department of Pathology, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Huijuan Liu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Caixia Cheng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China.,Department of Pathology, the First Hospital, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Ling Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Ling Chen
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Gynecology Obstetrics Hospital, 300052, Tianjin, PR China
| | - Xiaofei Zhuang
- Department of Tumor Surgery, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Yu Qian
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Jian Yang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Yanchun Ma
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Hongyi Li
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Fang Wang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Jing Liu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China.,Department of General Surgery, the First Hospital, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Xuefeng Liu
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, 310022, Hangzhou, PR China
| | - Yan Wang
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China.,Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100191, Beijing, PR China
| | - Ruifang Sun
- Tumor Biobank, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Shiping Guo
- Department of Tumor Surgery, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Yaoping Li
- Department of Colorectal & Anal Surgery, Affiliated Provincial Hospital of Shanxi Medical University, 030001, Taiyuan, PR China
| | - Xiaolong Cheng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, PR China
| | - Qimin Zhan
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China. .,Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100191, Beijing, PR China.
| | - Yongping Cui
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China. .,Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China.
| |
Collapse
|
14
|
Gong Y, Mao J, Wu D, Wang X, Li L, Zhu L, Song R. Circ-ZEB1.33 promotes the proliferation of human HCC by sponging miR-200a-3p and upregulating CDK6. Cancer Cell Int 2018; 18:116. [PMID: 30123094 PMCID: PMC6090603 DOI: 10.1186/s12935-018-0602-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022] Open
Abstract
Background Accumulating data indicated that circRNA plays important roles in regulating many biological processes of the tumor, the present study is designated for exploring roles of the circ-ZEB1.33-miR-200a-3p-CDK6 regulating axis in human hepatocellular carcinoma (HCC). Methods The regulation axis as predicted by using online tool circNet, the expression and correlation of circ-ZEB1.33-miR-200a-3p-CDK6 was verified in human HCC. The diagnostic value of both tumor and serum circ-ZEB1.33 was estimated by using clinical samples. The roles of circ-ZEB1.33-miR-200a-3p-CDK6 in regulating cell cycle were explored by using in vitro studies. Results Overexpression of circ-ZEB1.33 and CDK6, downregulation of miR-200a-3p were detected in human HCC tissues, negative correlation between circ-ZEB1.33 and miR-200a-3p, positive correlation between circ-ZEB1.33 and CDK6 were confirmed in human HCC tissues. Tissue and serum circ-ZEB1.33 were related to different TMN stages and prognosis in HCC patients. RNA pull-down assay implied that circ-ZEB1.33 could decrease miR-200a-3p by sponging miR-200a-3p, and the luciferase reporter assay indicated that miR-200a-3p could downregulate CDK6 transcription by targeting its 3′UTR. The in vitro assays indicated that circ-ZEB1.33 could promote the proliferation of HCC cells by increasing the percentage of S phase regulated by CDK6/Rb. Conclusion Proliferation promotion roles of the circ-ZEB1.33-miR-200a-3p-CDK6 regulating axis are existed and verified in human HCC, both tumor and serum circ-ZEB1.33 can serve as an indicator for the prognosis of HCC patients. Electronic supplementary material The online version of this article (10.1186/s12935-018-0602-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuhua Gong
- Department of Clinical Laboratory, The Third People's Hospital of Zhenjiang, 300 Daijiamen, Zhenjiang, 212005 Jiangsu China
| | - Jinzhong Mao
- Department of Radiology, The Third People's Hospital of Zhenjiang, 300 Daijiamen, Zhenjiang, 212005 Jiangsu China
| | - Di Wu
- Department of Hepatosis Inpatient, The Third People's Hospital of Zhenjiang, 300 Daijiamen, Zhenjiang, 212005 Jiangsu China
| | - Xuemei Wang
- Department of Clinical Laboratory, The Third People's Hospital of Zhenjiang, 300 Daijiamen, Zhenjiang, 212005 Jiangsu China
| | - Long Li
- Department of Clinical Laboratory, The Third People's Hospital of Zhenjiang, 300 Daijiamen, Zhenjiang, 212005 Jiangsu China
| | - Liang Zhu
- Department of Clinical Laboratory, The Third People's Hospital of Zhenjiang, 300 Daijiamen, Zhenjiang, 212005 Jiangsu China
| | - Rong Song
- Department of Clinical Laboratory, The Third People's Hospital of Zhenjiang, 300 Daijiamen, Zhenjiang, 212005 Jiangsu China
| |
Collapse
|
15
|
Oh SJ, Cho H, Kim S, Noh KH, Song KH, Lee HJ, Woo SR, Kim S, Choi CH, Chung JY, Hewitt SM, Kim JH, Baek S, Lee KM, Yee C, Park HC, Kim TW. Targeting Cyclin D-CDK4/6 Sensitizes Immune-Refractory Cancer by Blocking the SCP3-NANOG Axis. Cancer Res 2018; 78:2638-2653. [PMID: 29437706 DOI: 10.1158/0008-5472.can-17-2325] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
Immunoediting caused by antitumor immunity drives tumor cells to acquire refractory phenotypes. We demonstrated previously that tumor antigen-specific T cells edit these cells such that they become resistant to CTL killing and enrich NANOGhigh cancer stem cell-like cells. In this study, we show that synaptonemal complex protein 3 (SCP3), a member of the Cor1 family, is overexpressed in immunoedited cells and upregulates NANOG by hyperactivating the cyclin D1-CDK4/6 axis. The SCP3-cyclin D1-CDK4/6 axis was preserved across various types of human cancer and correlated negatively with progression-free survival of cervical cancer patients. Targeting CDK4/6 with the inhibitor palbociclib reversed multiaggressive phenotypes of SCP3high immunoedited tumor cells and led to long-term control of the disease. Collectively, our findings establish a firm molecular link of multiaggressiveness among SCP3, NANOG, cyclin D1, and CDK4/6 and identify CDK4/6 inhibitors as actionable drugs for controlling SCP3high immune-refractory cancer.Significance: These findings reveal cyclin D1-CDK4/6 inhibition as an effective strategy for controlling SCP3high immune-refractroy cancer. Cancer Res; 78(10); 2638-53. ©2018 AACR.
Collapse
Affiliation(s)
- Se Jin Oh
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hanbyoul Cho
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.,Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suhyun Kim
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Kyung Hee Noh
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwon-Ho Song
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hyo-Jung Lee
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Seon Rang Woo
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Translational Research Institute for Incurable Diseases, College of Medicine, Korea University, Seoul, Korea
| | - Suyeon Kim
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungki Baek
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Cassian Yee
- Department of Melanoma Medical Oncology and Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea.,Translational Research Institute for Incurable Diseases, College of Medicine, Korea University, Seoul, Korea
| | - Tae Woo Kim
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea. .,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea.,Translational Research Institute for Incurable Diseases, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
16
|
Glorieux M, Dok R, Nuyts S. Novel DNA targeted therapies for head and neck cancers: clinical potential and biomarkers. Oncotarget 2017; 8:81662-81678. [PMID: 29113422 PMCID: PMC5655317 DOI: 10.18632/oncotarget.20953] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/27/2017] [Indexed: 01/24/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide and despite advances in treatment over the last years, there is still a relapse rate of 50%. New therapeutic agents are awaited to increase the survival of patients. DNA repair targeted agents in combination with standard DNA damaging therapies are a recent evolution in cancer treatment. These agents focus on the DNA damage repair pathways in cancer cells, which are often involved in therapeutic resistance. Interesting targets to overcome these cancer defense mechanisms are: PARP, DNA-PK, PI3K, ATM, ATR, CHK1/2, and WEE1 inhibitors. The application of DNA targeted agents in head and neck squamous cell cancer showed promising preclinical results which are translated to multiple ongoing clinical trials, although no FDA approval has emerged yet. Biomarkers are necessary to select the patients that can benefit the most from this treatment, although adequate biomarkers are limited and validation is needed to predict therapeutic response.
Collapse
Affiliation(s)
- Mary Glorieux
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Rüveyda Dok
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Sandra Nuyts
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Costa R, Costa RB, Talamantes SM, Helenowski I, Peterson J, Kaplan J, Carneiro BA, Giles FJ, Gradishar WJ. Meta-analysis of selected toxicity endpoints of CDK4/6 inhibitors: Palbociclib and ribociclib. Breast 2017; 35:1-7. [PMID: 28618307 DOI: 10.1016/j.breast.2017.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors such as palbociclib and ribociclib are associated with distinct adverse effects (AEs) compared to other targeted therapies. This meta-analysis of clinical trials summarizes these agents' toxicity profile. METHODS A librarian-guided literature search was conducted in March of 2017. The trials needed to have at least one of the study arms consisting of palbociclib or ribociclib monotherapy at currently FDA approved dose regimens. Heterogeneity across studies was analyzed using I2 statistics. Data were analyzed using random effects meta-analysis for absolute risks. RESULTS Seven randomized trials and 1,332 patients were included in our meta-analysis. There was evidence of significant heterogeneity between studies for serious AEs but not for death. The pooled absolute risk (AR) for all-causality serious AEs and treatment-related death were 16% and 0%, respectively. Patients treated with CDK 4/6 inhibitors had an AR of grade 3/4 neutropenia of 61%; neutropenic fever and infections were rare (1% and 3%, respectively). Grade 3/4 nausea, vomiting, and rash were rare. There was no significant correlation between age of patients at study entry and the risk of grade 3/4 neutropenia. CONCLUSION Treatment with CDK 4/6 inhibitors is well tolerated and associated with a low risk of treatment-related deaths. There is an increased AR of grade 3/4 neutropenia but a low AR of associated infections.
Collapse
Affiliation(s)
- R Costa
- Division of Hematology Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - R B Costa
- Division of Hematology Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Irene Helenowski
- Northwestern University Department of Preventive Medicine, Chicago, IL, USA
| | - Jonna Peterson
- Galter Health Sciences Library, Northwestern University, Chicago, IL, USA
| | - Jason Kaplan
- Division of Hematology Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - B A Carneiro
- Division of Hematology Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis J Giles
- Division of Hematology Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - W J Gradishar
- Division of Hematology Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|