1
|
Li J, Wang Z, Dong H, Hao Y, Gao P, Li W. Different expression levels of interleukin-36 in asthma phenotypes. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:3. [PMID: 38218943 PMCID: PMC10787970 DOI: 10.1186/s13223-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 06/26/2023] [Indexed: 01/15/2024]
Abstract
Interleukin (IL)-36 family is closely associated with inflammation and consists of IL-36α, IL-36β, IL-36γ, and IL-36Ra. The role of IL-36 in the context of asthma and asthmatic phenotypes is not well characterized. We examined the sputum IL-36 levels in patients with different asthma phenotypes in order to unravel the mechanism of IL-36 in different asthma phenotypes. Our objective was to investigate the induced sputum IL-36α, IL-36β, IL-36γ, and IL-36Ra concentrations in patients with mild asthma, and to analyze the relationship of these markers with lung function and other cytokines in patients with different asthma phenotypes. Induced sputum samples were collected from patients with mild controlled asthma (n = 62, 27 males, age 54.77 ± 15.49) and healthy non-asthmatic controls (n = 16, 10 males, age 54.25 ± 14.60). Inflammatory cell counts in sputum were determined. The concentrations of IL-36 and other cytokines in the sputum supernatant were measured by ELISA and Cytometric Bead Array. This is the first study to report the differential expression of different isoforms of IL-36 in different asthma phenotypes. IL-36α and IL-36β concentrations were significantly higher in the asthma group (P = 0.003 and 0.031), while IL-36Ra concentrations were significantly lower (P < 0.001) compared to healthy non-asthmatic controls. Sputum IL-36α and IL-36β concentrations in the neutrophilic asthma group were significantly higher than those in paucigranulocytic asthma (n = 24) and eosinophilic asthma groups (n = 23). IL-36α and IL-36β showed positive correlation with sputum neutrophils and total cell count (R = 0.689, P < 0.01; R = 0.304, P = 0.008; R = 0.689, P < 0.042; R = 0.253, P = 0.026). In conclusion, IL-36α and IL-36β may contribute to asthma airway inflammation by promoting neutrophil recruitment in airways. Our study provides insights into the inflammatory pathways of neutrophilic asthma and identifies potential therapeutic target.
Collapse
Affiliation(s)
- Jinyan Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengda Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongna Dong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuqiu Hao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Huang WC, Wu SJ, Hsu FW, Fang LW, Liou CJ. Mulberroside F improves airway hyperresponsiveness and inflammation in asthmatic mice. Kaohsiung J Med Sci 2023; 39:1213-1221. [PMID: 37819590 DOI: 10.1002/kjm2.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 10/13/2023] Open
Abstract
Mulberroside F is isolated from the leaves and roots of Morus alba L. Here, we investigated whether mulberroside F could alleviate airway inflammation and eosinophil infiltration in the lungs of asthmatic mice. We also examined whether mulberroside F attenuated inflammatory responses in human tracheal epithelial BEAS-2B cells. Female BALB/c mice were sensitized and challenged with ovalbumin (OVA), and administered different doses of mulberroside F via intraperitoneal injection. Additionally, tumor necrosis factor (TNF)-α-stimulated BEAS-2B cells were treated with various doses of mulberroside F, followed by detection of the expressions of inflammatory cytokines and chemokines. The results demonstrated that mulberroside F mitigated the levels of proinflammatory cytokines and chemokines, and CCL11, in inflammatory BEAS-2B cells. Mulberroside F also suppressed reactive oxygen species (ROS) production and ICAM-1 expression in TNF-α-stimulated BEAS-2B cells, which effectively suppressed monocyte cell adherence. In an animal model of asthma, mulberroside F treatment attenuated airway hyperresponsiveness, eosinophil infiltration, and goblet cell hyperplasia. Mulberroside F treatment also decreased lung fibrosis and airway inflammation in OVA-sensitized mice. Moreover, mulberroside F significantly reduced expressions of Th2-associated cytokines (including interleukin(IL)-4, IL-5, and IL-13) in bronchoalveolar lavage fluid compared to OVA-sensitized mice. Our results confirmed that mulberroside F is a novel bioactive compound that can effectively reduce airway inflammation and eosinophil infiltration in asthmatic mice via inhibition of Th2-cell activation.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Feng-Wen Hsu
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Li-Wen Fang
- Department of Nutrition, I-Shou University, Kaohsiung City, Taiwan
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
3
|
Arora P, Periwal N, Goyal Y, Sood V, Kaur B. iIL13Pred: improved prediction of IL-13 inducing peptides using popular machine learning classifiers. BMC Bioinformatics 2023; 24:141. [PMID: 37041520 PMCID: PMC10088697 DOI: 10.1186/s12859-023-05248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Inflammatory mediators play havoc in several diseases including the novel Coronavirus disease 2019 (COVID-19) and generally correlate with the severity of the disease. Interleukin-13 (IL-13), is a pleiotropic cytokine that is known to be associated with airway inflammation in asthma and reactive airway diseases, in neoplastic and autoimmune diseases. Interestingly, the recent association of IL-13 with COVID-19 severity has sparked interest in this cytokine. Therefore characterization of new molecules which can regulate IL-13 induction might lead to novel therapeutics. RESULTS Here, we present an improved prediction of IL-13-inducing peptides. The positive and negative datasets were obtained from a recent study (IL13Pred) and the Pfeature algorithm was used to compute features for the peptides. As compared to the state-of-the-art which used the regularization based feature selection technique (linear support vector classifier with the L1 penalty), we used a multivariate feature selection technique (minimum redundancy maximum relevance) to obtain non-redundant and highly relevant features. In the proposed study (improved IL-13 prediction (iIL13Pred)), the use of the mRMR feature selection method is instrumental in choosing the most discriminatory features of IL-13-inducing peptides with improved performance. We investigated seven common machine learning classifiers including Decision Tree, Gaussian Naïve Bayes, k-Nearest Neighbour, Logistic Regression, Support Vector Machine, Random Forest, and extreme gradient boosting to efficiently classify IL-13-inducing peptides. We report improved AUC, and MCC scores of 0.83 and 0.33 on validation data as compared to the current method. CONCLUSIONS Extensive benchmarking experiments suggest that the proposed method (iIL13Pred) could provide improved performance metrics in terms of sensitivity, specificity, accuracy, the area under the curve - receiver operating characteristics (AUCROC) and Matthews correlation coefficient (MCC) than the existing state-of-the-art approach (IL13Pred) on the validation dataset and an external dataset comprising of experimentally validated IL-13-inducing peptides. Additionally, the experiments were performed with an increased number of experimentally validated training datasets to obtain a more robust model. A user-friendly web server ( www.soodlab.com/iil13pred ) is also designed to facilitate rapid screening of IL-13-inducing peptides.
Collapse
Affiliation(s)
- Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India.
| | - Neha Periwal
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| | - Yash Goyal
- Department of Computer Science, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| | - Baljeet Kaur
- Department of Computer Science, Hansraj College, University of Delhi, Delhi, India.
| |
Collapse
|
4
|
Liu H, Nie H, Lai W, Shi Y, Liu X, Li K, Tian L, Xi Z, Lin B. Different exposure modes of PM 2.5 induces bronchial asthma and fibrosis in male rats through macrophage activation and immune imbalance induced by TIPE2 methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114200. [PMID: 36274320 DOI: 10.1016/j.ecoenv.2022.114200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/02/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Exposure to PM2.5 can aggravate the occurrence and development of bronchial asthma and fibrosis. Here, we investigated the differences in bronchial injury caused by different exposure modes of PM2.5 (high concentration intermittent exposure and low concentration continuous exposure), and the mechanism of macrophage activation and respiratory immune imbalance induced by PM2.5, leading to bronchial asthma and airway fibrosis using animal and cell models. A "PM2.5 real-time online concentrated animal whole-body exposure system" was used to conduct PM2.5 respiratory exposure of Wistar rats for 12 weeks, which can enhance oxidative stress in rat bronchus, activate epithelial cells and macrophages, release chemokines, recruit inflammatory cells, release inflammatory factors and extracellular matrix, promote bronchial mucus hypersecretion, inhibit the expression of epithelial cytoskeletal proteins, destroy airway barrier, and induce asthma. Furthermore, PM2.5 induced M2 polarization in lung bronchial macrophages through JAK/STAT and PI3K/Akt signaling pathways, and compared with low concentration continuous exposure, high concentration intermittent exposure of PM2.5 could regulate significantly higher expression of TIPE2 protein through promoter methylation of TIPE2 DNA, thereby activating PI3K/Akt signaling pathway and more effectively inducing M2 polarization of macrophages. Additionally, activated macrophages release IL-23, and activated epithelial cells and macrophages released TGF-β1, which promoted the differentiation of Th17 cells, triggered the Th17 dominant immune response, and activated the TGF-β1/Smad2 signaling pathway, finally causing bronchial fibrosis. Moreover, when the total amount of PM2.5 exposure was equal, high concentration-intermittent exposure was more serious than low concentration-continuous exposure. In vitro experiments, the co-culture models of PM2.5 with BEAS-2B, WL-38 and rat primary alveolar macrophages further confirmed that PM2.5 could induce the macrophage activation through oxidative stress and TIPE2 DNA methylation, and activate the TGF-β1/Smad2 signaling pathway, leading to the occurrence of bronchial fibrosis.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Xuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
5
|
Huang WC, Wu SJ, Yeh KW, Liou CJ. Gypenoside A from Gynostemma pentaphyllum Attenuates Airway Inflammation and Th2 Cell Activities in a Murine Asthma Model. Int J Mol Sci 2022; 23:ijms23147699. [PMID: 35887041 PMCID: PMC9315554 DOI: 10.3390/ijms23147699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Our previous study found that oral administration of Gynostemma pentaphyllum extract can attenuate airway hyperresponsiveness (AHR) and reduce eosinophil infiltration in the lungs of asthmatic mice. Gypenoside A is isolated from G. pentaphyllum. In this study, we investigated whether gypenoside A can effectively reduce asthma in mice. Asthma was induced in BALB/c mice by ovalbumin injection. Asthmatic mice were treated with gypenoside A via intraperitoneal injection to assess airway inflammation, AHR, and immunomodulatory effects. In vitro, gypenoside A reduced inflammatory and oxidative responses in inflammatory tracheal epithelial cells. Experimental results showed that gypenoside A treatment can suppress eosinophil infiltration in the lungs, reduce tracheal goblet cell hyperplasia, and attenuate AHR. Gypenoside A significantly reduced Th2 cytokine expression and also inhibited the expression of inflammatory genes and proteins in the lung and bronchoalveolar lavage fluid. In addition, gypenoside A also significantly inhibited the secretion of inflammatory cytokines and chemokines and reduced oxidative expression in inflammatory tracheal epithelial cells. The experimental results suggested that gypenoside A is a natural compound that can effectively reduce airway inflammation and AHR in asthma, mainly by reducing Th2 cell activation.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan;
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan;
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33303, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan;
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan;
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan
- Correspondence: ; Tel.: +886-3-2118999 (ext. 5607)
| |
Collapse
|
6
|
Zhang L, Devanathadesikan Seshadri V, Abdel Aziz Ibrahim I, Han X, Ou L. Tilianin alleviates airway inflammation in ovalbumin-induced allergic asthma in mice through the regulation of Th2 cytokines and TGF–β1/Smad markers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
7
|
MicroRNA-629-3p Promotes Interleukin-13-Induced Bronchial Epithelial Cell Injury and Inflammation by Targeting FOXA2. Cell Biochem Biophys 2022; 80:457-466. [DOI: 10.1007/s12013-022-01072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
|
8
|
Ran MY, Yuan Z, Fan CT, Ke Z, Wang XX, Sun JY, Su DJ. Multiplex-Heterogeneous Network-Based Capturing Potential SNP "Switches" of Pathways Associating With Diverse Disease Characteristics of Asthma. Front Cell Dev Biol 2022; 9:744932. [PMID: 34970542 PMCID: PMC8712737 DOI: 10.3389/fcell.2021.744932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Asthma is a complex heterogeneous respiratory disorder. In recent years nubbly regions of the role of genetic variants and transcriptome including mRNAs, microRNAs, and long non-coding RNAs in the pathogenesis of asthma have been separately excavated and reported. However, how to systematically integrate and decode this scattered information remains unclear. Further exploration would improve understanding of the internal communication of asthma. To excavate new insights into the pathogenesis of asthma, we ascertained three asthma characteristics according to reviews, airway inflammation, airway hyperresponsiveness, and airway remodeling. We manually created a contemporary catalog of corresponding risk transcriptome, including mRNAs, miRNAs, and lncRNAs. MIMP is a multiplex-heterogeneous networks-based approach, measuring the relevance of disease characteristics to the pathway by examining the similarity between the determined vectors of risk transcriptome and pathways in the same low-dimensional vector space. It was developed to enable a more concentrated and in-depth exploration of potential pathways. We integrated experimentally validated competing endogenous RNA regulatory information and the SNPs with significant pathways into the ceRNA-mediated SNP switching pathway network (CSSPN) to analyze ceRNA regulation of pathways and the role of SNP in these dysfunctions. We discovered 11 crucial ceRNA regulations concerning asthma disease feature pathway and propose a potential mechanism of ceRNA regulatory SNP → gene → pathway → disease feature effecting asthma pathogenesis, especially for MALAT1 (rs765499057/rs764699354/rs189435941) → hsa-miR-155 → IL13 (rs201185816/rs1000978586/rs202101165) → Interleukin-4 and Interleukin-13 signaling → inflammation/airway remodeling and MALAT1 (rs765499057/rs764699354/rs189435941) → hsa-miR-155 → IL17RB (rs948046241) → Interleukin-17 signaling (airway remodeling)/Cytokine-cytokine receptor interaction (inflammation). This study showed a systematic and propagable workflow for capturing the potential SNP “switch” of asthma through text and database mining and provides further information on the pathogenesis of asthma.
Collapse
Affiliation(s)
- Ming-Yu Ran
- Department of College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhang Yuan
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chui-Ting Fan
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhou Ke
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin-Xing Wang
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia-Yuan Sun
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Dong-Ju Su
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Huang C, Li F, Wang J, Tian Z. Innate-like Lymphocytes and Innate Lymphoid Cells in Asthma. Clin Rev Allergy Immunol 2021; 59:359-370. [PMID: 31776937 DOI: 10.1007/s12016-019-08773-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Asthma is a chronic pulmonary disease, highly associated with immune disorders. The typical symptoms of asthma include airway hyperresponsiveness (AHR), airway remodeling, mucus overproduction, and airflow limitation. The etiology of asthma is multifactorial and affected by genetic and environmental factors. Increasing trends toward dysbiosis, smoking, stress, air pollution, and a western lifestyle may account for the increasing incidence of asthma. Based on the presence or absence of eosinophilic inflammation, asthma is mainly divided into T helper 2 (Th2) and non-Th2 asthma. Th2 asthma is mediated by allergen-specific Th2 cells, and eosinophils activated by Th2 cells via the secretion of interleukin (IL)-4, IL-5, and IL-13. Different from Th2 asthma, non-Th2 asthma shows little eosinophilic inflammation, resists to corticosteroid treatment, and occurs mainly in severe asthmatic patients. Previous studies of asthma primarily focused on the function of Th2 cells, but, with the discovery of non-Th2 asthma and the involvement of innate lymphoid cells (ILCs) in the pathogenesis of asthma, tissue-resident innate immune cells in the lung have become the focus of attention in asthma research. Currently, innate-like lymphocytes (ILLs) and ILCs as important components of the innate immune system in mucosal tissues are reportedly involved in the pathogenesis of or protection against both Th2 and non-Th2 asthma. These findings of the functions of different subsets of ILLs and ILCs may provide clues for the treatment of asthma.
Collapse
Affiliation(s)
- Chao Huang
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Fengqi Li
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jian Wang
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zürich, University Hospital Zürich, 8091, Zürich, Switzerland.
| | - Zhigang Tian
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
10
|
Steele H, Sachen K, McKnight AJ, Soloff R, Herro R. Targeting TL1A/DR3 Signaling Offers a Therapeutic Advantage to Neutralizing IL13/IL4Rα in Muco-Secretory Fibrotic Disorders. Front Immunol 2021; 12:692127. [PMID: 34305924 PMCID: PMC8299868 DOI: 10.3389/fimmu.2021.692127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/17/2021] [Indexed: 01/12/2023] Open
Abstract
Mucus secretion is an important feature of asthma that highly correlates with morbidity. Current therapies, including administration of mucolytics and anti-inflammatory drugs, show limited effectiveness and durability, underscoring the need for novel effective and longer lasting therapeutic approaches. Here we show that mucus production in the lungs is regulated by the TNF superfamily member 15 (TL1A) acting through the mucus-inducing cytokine IL-13. TL1A induces IL13 expression by innate lymphoid cells leading to mucus production, in addition to promoting airway inflammation and fibrosis. Reciprocally, neutralization of IL13 signaling through its receptor (IL4Rα), completely reverses TL1A-induced mucus secretion, while maintaining airway inflammation and fibrosis. Importance of TL1A is further demonstrated using a preclinical asthma model induced by chronic house dust mite exposure where TL1A neutralization by genetic deletion or antagonistic blockade of its receptor DR3 protected against mucus production and fibrosis. Thus, TL1A presents a promising therapeutic target that out benefits IL13 in reversing mucus production, airway inflammation and fibrosis, cardinal features of severe asthma in humans.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Kacey Sachen
- Kyowa Kirin Pharmaceutical Research, Inc., La Jolla, CA, United States
| | | | - Rachel Soloff
- Kyowa Kirin Pharmaceutical Research, Inc., La Jolla, CA, United States
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
11
|
Qian N, Gao Y, Wang J, Wang Y. Emerging role of interleukin-13 in cardiovascular diseases: A ray of hope. J Cell Mol Med 2021; 25:5351-5357. [PMID: 33943014 PMCID: PMC8184673 DOI: 10.1111/jcmm.16566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the great progress made in the treatment for cardiovascular diseases (CVDs), the morbidity and mortality of CVDs remains high due to the lack of effective treatment strategy. Inflammation is a central pathophysiological feature of the heart in response to both acute and chronic injury, while the molecular basis and underlying mechanisms remains obscure. Interleukin (IL)-13, a pro-inflammatory cytokine, has been known as a critical mediator in allergy and asthma. Recent studies appraise the role of IL-13 in CVDs, revealing that IL-13 is not only involved in more obvious cardiac inflammatory diseases such as myocarditis but also relevant to acute or chronic CVDs of other origins, such as myocardial infarction and heart failure. The goal of this review is to summarize the advancement in our knowledge of the regulations and functions of IL-13 in CVDs and to discuss the possible mechanisms of IL-13 involved in CVDs. We highlight that IL-13 may be a promising target for immunotherapy in CVDs.
Collapse
Affiliation(s)
- Ningjing Qian
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Ying Gao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Dawson RE, Jenkins BJ, Saad MI. IL-6 family cytokines in respiratory health and disease. Cytokine 2021; 143:155520. [PMID: 33875334 DOI: 10.1016/j.cyto.2021.155520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis represent a major burden on healthcare systems with limited effective therapeutic options. Developing effective treatments for these debilitating diseases requires an understanding of how alterations at the molecular level affect lung macroscopic architecture. A common theme among these lung disorders is the presence of an underlying dysregulated immune system which can lead to sustained chronic inflammation. In this respect, several inflammatory cytokines have been implicated in the pathogenesis of lung diseases, thus leading to the notion that cytokines are attractive therapeutic targets for these disorders. In this review, we discuss and highlight the recent breakthroughs that have enhanced our understanding of the role of the interleukin (IL)-6 family of cytokines in lung homeostasis and chronic diseases including asthma, COPD, lung fibrosis and lung cancer.
Collapse
Affiliation(s)
- Ruby E Dawson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
13
|
Wang C, Tang J, Qian B, Zeng Z, Gao Y, Song JL. Rubusoside alleviates the ovalbumin-induced mice allergic asthma by modulating the NF-κB activation. J Food Biochem 2020; 44:e13187. [PMID: 32185800 DOI: 10.1111/jfbc.13187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
The anti-inflammatory and anti-asthmatic effects of rubusoside (Rbs) were investigated in the ovalbumin (OVA)-induced asthmatic mice, followed by effective attenuation of Rbs treatment on the airway hyperresponsiveness and reduction of inflammatory cells inside the bronchoalveolar lavage fluid (BALF). The mitigation of inflammatory infiltration as a result of Rbs treatment was histologically observed in these mice lungs. Rbs contributed to the decrease of inflammatory cytokines (TNF-α, IL-13, IL-6, IL-5, and IL-4) inside the BALF of mice with asthma. A decline of OVA-dependent IgE and IgG1 inside the serum was also noticed in these mice. Rbs was proved to enhance the mRNA level of Foxp3 inside the mice lung affected with asthma while decrease that of IL-17A, IL-23, and RORγt. NF-κB pathway activation elicited by OVA was suppressed by Rbs inside the pulmonary tissues. Rbs played significantly in the reduction of airway inflammation induced by OVA which with modulating NF-κB pathway activation. PRACTICAL APPLICATIONS: Simultaneous therapy with medicine and food is strategically significant for disease prevention and treatment in traditional Chinese medicine. Rbs is a diterpene glycoside isolated from Rubus suavissimus. The anti-inflammatory and anti-asthmatic mechanism dependent of Rbs need further study clinically. The goal of current investigation is to explore the anti-inflammatory as well as anti-asthmatic activity of Rbs in mouse models of OVA-induced experimental allergic asthma. Results of the present study are scientifically supportive for the use of Rbs as an adjunctive reagent for clinical treatment of allergic asthma.
Collapse
Affiliation(s)
- Chengqiang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Jia Tang
- Institution of Documentation of Chinese Traditional Medicine Research, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Bo Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Zhen Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Yang Gao
- Department of Pharmacy, Northern Jiangsu People's Hospital, Yangzhou, P.R. China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China.,Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
14
|
Hu L, Li L, Zhang H, Li Q, Jiang S, Qiu J, Sun J, Dong J. Inhibition of airway remodeling and inflammatory response by Icariin in asthma. Altern Ther Health Med 2019; 19:316. [PMID: 31744482 PMCID: PMC6862818 DOI: 10.1186/s12906-019-2743-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 11/04/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Icariin (ICA) is the major active ingredient extracted from Chinese herbal medicine Epimedium, which has the effects of improving cardiovascular function, inducing tumor cell differentiation and increasing bone formation. It is still rarely reported that ICA can exert its therapeutic potential in asthma via anti-airway remodeling. The point of the study was to estimate the role of ICA in anti-. airway remodeling and its possible mechanism of action in a mouse ovalbumin. (OVA)-induced asthma model. METHODS Hematoxylin and Eosin Staining were performed for measuring airway remodeling related indicators. ELISA, Western blot and Immunohistochemistr-. y (IHC) were used for analyzing the level of protein. RT-PCR was used for analyzing the level of mRNA. RESULTS On days 1 and 8, mice were sensitized to OVA by intraperitoneal injection. From day 16 to day 43, previously sensitized mice were exposed to OVA once daily by nebulizer. Interventions were performed orally with ICA (ICA low, medium and high dose groups) or dexamethasone 1 h prior to each OVA exposure. ICA improves pulmonary function, attenuates pulmonary inflammation and airway remodeling in mice exposed to OVA. Histological and Western blot analysis of the lungs show that ICA suppressed transforming growth factor beta 1 and vascular endothelial growth factor expression. Increase in interleukin 13 and endothelin-1 in serum and bronchoalveolar lavage fluid in OVA-induced asthmatic mice are also decreased by ICA. ICA attenuates airway smooth muscle cell proliferation, as well as key factors in the MAPK/Erk pathway. CONCLUSIONS The fact that ICA can alleviate OVA-induced asthma at least partly through inhibition of ASMC proliferation via MAPK/Erk pathway provides a solid theoretical basis for ICA as a replacement therapy for asthma. These data reveal the underlying reasons of the use of ICA-rich herbs in Traditional Chinese Medicine to achieve good results in treating asthma.
Collapse
|
15
|
Regulation of Airway Smooth Muscle Contraction in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:381-422. [PMID: 31183836 DOI: 10.1007/978-981-13-5895-1_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Airway smooth muscle (ASM) extends from the trachea throughout the bronchial tree to the terminal bronchioles. In utero, spontaneous phasic contraction of fetal ASM is critical for normal lung development by regulating intraluminal fluid movement, ASM differentiation, and release of key growth factors. In contrast, phasic contraction appears to be absent in the adult lung, and regulation of tonic contraction and airflow is under neuronal and humoral control. Accumulating evidence suggests that changes in ASM responsiveness contribute to the pathophysiology of lung diseases with lifelong health impacts.Functional assessments of fetal and adult ASM and airways have defined pharmacological responses and signaling pathways that drive airway contraction and relaxation. Studies using precision-cut lung slices, in which contraction of intrapulmonary airways and ASM calcium signaling can be assessed simultaneously in situ, have been particularly informative. These combined approaches have defined the relative importance of calcium entry into ASM and calcium release from intracellular stores as drivers of spontaneous phasic contraction in utero and excitation-contraction coupling.Increased contractility of ASM in asthma contributes to airway hyperresponsiveness. Studies using animal models and human ASM and airways have characterized inflammatory and other mechanisms underlying increased reactivity to contractile agonists and reduced bronchodilator efficacy of β2-adrenoceptor agonists in severe diseases. Novel bronchodilators and the application of bronchial thermoplasty to ablate increased ASM within asthmatic airways have the potential to overcome limitations of current therapies. These approaches may directly limit excessive airway contraction to improve outcomes for difficult-to-control asthma and other chronic lung diseases.
Collapse
|
16
|
Song JL, Qian B, Pan C, Lv F, Wang H, Gao Y, Zhou Y. Protective activity of mogroside V against ovalbumin-induced experimental allergic asthma in Kunming mice. J Food Biochem 2019; 43:e12973. [PMID: 31489660 DOI: 10.1111/jfbc.12973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
We investigated the antiasthmatic effect of mogroside V (Mog V) in mice with ovalbumin (OVA)-induced asthma. Administration of Mog V effectively attenuated OVA-induced airway hyperresponsiveness and reduced the number of inflammatory cells in bronchoalveolar lavage fluid (BALF). Histological examination showed that Mog V reduced the inflammatory infiltration of the lungs in the asthmatic mice. ELISAs suggested that Mog V effectively decreased the levels of IL-4, IL-5, and IL-13 in BALF and serum levels of OVA-specific IgE and IgG1 in the asthmatic mice. A quantitative reverse-transcription PCR assay also indicated that Mog V decreased the mRNA levels of IL-17A, IL-23, and RORγt in the lungs of the asthmatic mice (the opposite effect on Foxp3 mRNA). Furthermore, Mog V significantly reduced the OVA-induced activation of NF-κB in the lungs. This study indicates that Mog V alleviates OVA-induced inflammation in airways, and this effect is associated with a reduction in NF-κB activation. PRACTICAL APPLICATIONS: A traditional Chinese medicine herb has been reported to have a strong curative effect on asthma in clinical practice. Siraitia grosvenorii is known in China as a functional food product with the ability to improve lung function. Mogroside V is a triterpene glycoside isolated from S. grosvenorii. Nonetheless, the antiasthmatic effect of mogroside V has not been evaluated yet. The aim of this study was to investigate the antiasthmatic activity of mogroside V in mice with chemically induced asthma. The data from this study will provide some scientific evidence supporting wider use of S. grosvenorii in functional foods.
Collapse
Affiliation(s)
- Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China.,Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland.,Department of Nutrition and Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Bo Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Cailing Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Fangfang Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Haipeng Wang
- Department of Nutrition and Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Yang Gao
- Department of Pharmacy, Northern Jiangsu People's Hospital, Yangzhou, People's Republic of China
| | - Yanyuan Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Guilin Medical University, Guilin, People's Republic of China
| |
Collapse
|
17
|
Kelly J, Minoda Y, Meredith T, Cameron G, Philipp MS, Pellicci DG, Corbett AJ, Kurts C, Gray DH, Godfrey DI, Kannourakis G, Berzins SP. Chronically stimulated human MAIT cells are unexpectedly potent IL-13 producers. Immunol Cell Biol 2019; 97:689-699. [PMID: 31323167 PMCID: PMC6790710 DOI: 10.1111/imcb.12281] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
Abstract
Mucosal‐associated invariant T (MAIT) cells are unconventional T cells that recognize antigens derived from riboflavin biosynthesis. In addition to anti‐microbial functions, human MAIT cells are associated with cancers, autoimmunity, allergies and inflammatory disorders, although their role is poorly understood. Activated MAIT cells are well known for their rapid release of Th1 and Th17 cytokines, but we have discovered that chronic stimulation can also lead to potent interleukin (IL)‐13 expression. We used RNA‐seq and qRT‐PCR to demonstrate high expression of the IL‐13 gene in chronically stimulated MAIT cells, and directly identify IL‐13 using intracellular flow cytometry and multiplex bead analysis of MAIT cell cultures. This unexpected finding has important implications for IL‐13‐dependent diseases, such as colorectal cancer (CRC), that occur in mucosal areas where MAIT cells are abundant. We identify MAIT cells near CRC tumors and show that these areas and precancerous polyps express high levels of the IL‐13 receptor, which promotes tumor progression and metastasis. Our data suggest that MAIT cells have a more complicated role in CRC than currently realized and that they represent a promising new target for immunotherapies where IL‐13 can be a critical factor.
Collapse
Affiliation(s)
- Jason Kelly
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Federation University Australia, Ballarat, VIC, Australia
| | - Yosuke Minoda
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Federation University Australia, Ballarat, VIC, Australia
| | - Tobias Meredith
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Federation University Australia, Ballarat, VIC, Australia
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marie-Sophie Philipp
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | - Daniel Hd Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Federation University Australia, Ballarat, VIC, Australia
| | - Stuart P Berzins
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Federation University Australia, Ballarat, VIC, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Park HA, Kwon OK, Ryu HW, Min JH, Park MW, Park MH, Paik JH, Choi S, Paryanto I, Yuniato P, Oh SR, Ahn KS, Lee JW. Physalis peruviana L. inhibits ovalbumin‑induced airway inflammation by attenuating the activation of NF‑κB and inflammatory molecules. Int J Mol Med 2019; 43:1830-1838. [PMID: 30816433 PMCID: PMC6414162 DOI: 10.3892/ijmm.2019.4110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Physalis peruviana L. (PP) is well known for its various properties, including its antioxidant property. In our previous study, the protective effects of PP against cigarette smoke‑induced airway inflammation were confirmed. The purpose of the present study was to evaluate the anti‑inflammatory effect of PP against ovalbumin (OVA)‑induced airway inflammation. Treatment with PP inhibited the numbers of eosinophils and the levels of inflammatory cytokines, including interleukin (IL)‑4, IL‑5 and IL‑13, in the bronchoalveolar lavage fluid (BALF) of animal models with OVA‑induced allergic asthma. PP also significantly decreased the production of total immunoglobulin E in the serum. Lung sections stained with hematoxylin and eosin revealed that the influx of inflammatory cells was decreased in the lungs of mice treated with PP compared with cells in the OVA group. The increased expression levels of monocyte chemoattractant protein‑1 (MCP‑1) and T cell marker KEN‑5 were also reduced following PP treatment in the lung tissues compared with those in the OVA group. The PAS staining results showed that PP attenuated the overproduction of mucus in the lung. Additionally, western blot analysis revealed that PP significantly downregulated the activation of nuclear factor‑κB/p38 mitogen‑activated protein kinase/c‑Jun N‑terminal kinase, and upregulated the expression of heme oxgenase‑1 in the lungs. In an in vitro experiment, PP effectively reduced the levels of LPS‑stimulated MCP‑1 in a concentration‑dependent manner. Taken together, these results indicate that PP has considerable potential in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Min-Woo Park
- SciTech Korea Inc., Seoul 01138, Republic of Korea
| | - Mi-Hyeong Park
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk 28159, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Imam Paryanto
- Center for Pharmaceutical and Medical Technology, the Agency for the Assessment and Application of Technology, Tangerang, Banten 15314, Indonesia
| | - Prasetyawan Yuniato
- Center for Pharmaceutical and Medical Technology, the Agency for the Assessment and Application of Technology, Tangerang, Banten 15314, Indonesia
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| |
Collapse
|
19
|
A meta-analysis of anti-interleukin-13 monoclonal antibodies for uncontrolled asthma. PLoS One 2019; 14:e0211790. [PMID: 30703143 PMCID: PMC6355027 DOI: 10.1371/journal.pone.0211790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
More and more clinical trials have tried to assess the clinical benefit of anti-interleukin (IL)-13 monoclonal antibodies for uncontrolled asthma. The aim of this study is to evaluate the efficacy and safety of anti-IL-13 monoclonal antibodies for uncontrolled asthma. Major databases were searched for randomized controlled trials comparing the anti-IL-13 treatment and a placebo in uncontrolled asthma. Outcomes, including asthma exacerbation rate, forced expiratory volume in 1 second (FEV1), Asthma Quality of Life Questionnaire (AQLQ) scores, rescue medication use, and adverse events were extracted from included studies for systematic review and meta-analysis. Five studies involving 3476 patients and two anti-IL-13 antibodies (lebrikizumab and tralokinumab) were included in this meta-analysis. Compared to the placebo, anti-IL-13 treatments were associated with significant improvement in asthma exacerbation, FEV1 and AQLQ scores, and reduction in rescue medication use. Adverse events and serious adverse events were similar between two groups. Subgroup analysis showed patients with high periostin level had a lower risk of asthma exacerbation after receiving anti-IL-13 treatment. Our study suggests that anti-IL-13 monoclonal antibodies could improve the management of uncontrolled asthma. Periostin may be a good biomarker to detect the specific subgroup who could get better response to anti-IL-13 treatments. In view of blocking IL-13 alone is possibly not enough to achieve asthma control because of the overlapping pathophysiological roles of IL-13/IL-4 in inflammatory pathways, combined blocking of IL-13 and IL-4 with monoclonal antibodies may be more encouraging.
Collapse
|
20
|
Mao YM, Zhao CN, Leng J, Leng RX, Ye DQ, Zheng SG, Pan HF. Interleukin-13: A promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev 2018; 45:9-23. [PMID: 30581068 DOI: 10.1016/j.cytogfr.2018.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Interleukin-13 (IL-13) was previously thought to be a redundant presence of IL-4, but in recent years its role in immunity, inflammation, fibrosis, and allergic diseases has become increasingly prominent. IL-13 can regulate several subtypes of T helper (Th) cells and affect their transformation, including Th1, Th2, T17, etc., thus it may play an important role in immune system. Previous studies have revealed that IL-13 is implicated in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), ulcerative colitis (UC), type 1 diabetes (T1D), sjogren's syndrome (SS), etc. In this review, we will briefly discuss the biological features of IL-13 and summarize recent advances in the role of IL-13 in the development and pathogenesis of autoimmune diseases. This information may provide new perspectives and suggestions for the selection of therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jing Leng
- Anhui Academy of Medical Sciences, 15 Yonghong Road, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
21
|
Kim D, McAlees JW, Bischoff LJ, Kaur D, Houshel LK, Gray J, Hargis J, Davis X, Dudas PL, Deshmukh H, Lewkowich IP. Combined administration of anti-IL-13 and anti-IL-17A at individually sub-therapeutic doses limits asthma-like symptoms in a mouse model of Th2/Th17 high asthma. Clin Exp Allergy 2018; 49:317-330. [PMID: 30353972 DOI: 10.1111/cea.13301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recent studies have demonstrated that Th2 responses have the ability to antagonize Th17 responses. In mouse models of allergic asthma, blockade of Th2-effector cytokines results in elaboration of Th17 responses and associated increases in pulmonary neutrophilia. While these can be controlled by simultaneous blockade of Th17-associated effector cytokines, clinical trials of anti-IL-17/IL-17RA blocking therapies have demonstrated increased of risk of bacterial and fungal infections. Identification of minimally effective doses of cytokine-blocking therapies with the goal of reducing the potential emergence of infection-related complications is a translationally relevant goal. OBJECTIVE In the current report, we examine whether combined blockade of IL-13 and IL-17A, at individually sub-therapeutic levels, can limit the development of allergic asthma while sparing expression of IL-17A-associated anti-microbial effectors. METHODS House dust mite was given intratracheally to A/J mice. Anti-IL-13 and anti-IL-17A antibodies were administered individually, or concomitantly at sub-therapeutic doses. Airway hyper-reactivity, lung inflammation, magnitude of Th2- and Th17-associated cytokine production and expression of IL-13- and IL-17A-induced genes in the lungs was assessed. RESULTS Initial dosing studies identified sub-therapeutic levels of IL-13 and IL-17A blocking mAbs that have a limited effect on asthma parameters and do not impair responses to microbial products or infection. Subsequent studies demonstrated that combined sub-therapeutic dosing with IL-13 and IL-17A blocking mAbs resulted in significant improvement in airway hyperresponsiveness (AHR) and expression of IL-13-induced gene expression. Importantly, these doses neither exacerbated nor inhibited production of Th17-associated cytokines, or IL-17A-associated gene expression. CONCLUSION This study suggests that combining blockade of individual Th2 and Th17 effector cytokines, even at individually sub-therapeutic levels, may be sufficient to limit disease development while preserving important anti-microbial pathways. Such a strategy may therefore have reduced potential for adverse events associated with blockade of these pathways.
Collapse
Affiliation(s)
- Dasom Kim
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jaclyn W McAlees
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lindsay J Bischoff
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Davinder Kaur
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lauren K Houshel
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jerilyn Gray
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julie Hargis
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xenia Davis
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul L Dudas
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Hitesh Deshmukh
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Ian P Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
22
|
Hussain SRA, Mejias A, Ramilo O, Peeples ME, Grayson MH. Post-viral atopic airway disease: pathogenesis and potential avenues for intervention. Expert Rev Clin Immunol 2018; 15:49-58. [PMID: 30370798 DOI: 10.1080/1744666x.2019.1541737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: In early childhood, wheezing due to lower respiratory tract illness is often associated with infection by commonly known respiratory viruses such as respiratory syncytial virus (RSV) and human rhinovirus (RV). How respiratory viral infections lead to wheeze and/or asthma is an area of active research. Areas covered: This review provides an updated summary of the published information on the development of post-viral induced atopy and asthma and the mechanisms involved. We focus on the contribution of animal models in identifying pathways that may contribute to atopy and asthma following respiratory virus infection, different polymorphisms that have been associated with asthma development, and current options for disease management and potential future interventions. Expert commentary: Currently there are no prophylactic therapies that prevent infants infected with respiratory viruses from developing asthma or atopy. Neither are there curative therapies for patients with asthma. Therefore, a better understanding of genetic factors and other associated biomarkers in respiratory viral induced pathogenesis is important for developing effective personalized therapies.
Collapse
Affiliation(s)
- Syed-Rehan A Hussain
- a Division of Allergy and Immunology , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,b Center for Clinical and Translational Research , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA.,c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA
| | - Asuncion Mejias
- c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA.,d Division of Infectious Diseases , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,e Center for Vaccines and Immunity , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Octavio Ramilo
- c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA.,d Division of Infectious Diseases , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,e Center for Vaccines and Immunity , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Mark E Peeples
- c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA.,e Center for Vaccines and Immunity , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Mitchell H Grayson
- a Division of Allergy and Immunology , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,b Center for Clinical and Translational Research , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA.,c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA
| |
Collapse
|
23
|
Erlich TH, Sharkia I, Landolina N, Assayag M, Goldberger O, Berkman N, Levi-Schaffer F, Razin E. Modulation of allergic responses by mitochondrial STAT3 inhibitors. Allergy 2018; 73:2160-2171. [PMID: 29683527 DOI: 10.1111/all.13467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Recently, we have shown that mast cell mitochondrial STAT3 could serve as a new target for the regulation of the allergic response as it plays an essential role in immunologically mediated degranulation of mast cells. In the present work, we explored how two recently developed mitochondrial STAT3 inhibitors (Mitocur-1 and Mitocur-3) modulate the allergic response. METHODS Experiments were performed both in vitro in cultured human/mouse mast cells and with rat basophilic leukemia (RBL) cells and also in vivo in mice. The effect of mitochondrial STAT3 inhibition on mast cell function was determined via checking degranulation and several cytokines secretion levels. RESULTS Here, we show that treatment of rodent and human cultured mast cells with low concentrations of mitochondrial STAT3 inhibitors had no effect on STAT3 target gene expression. However, these inhibitors caused a significant reduction in mast cell exocytosis and cytokine release, due to a decrease in OXPHOS activity and STAT3 serine 727 phosphorylation. It was also observed in an OVA mouse model of allergic asthma that one of the inhibitors used significantly reduced eosinophilia and neutrophilia compared to the control mice group. Furthermore, it was observed that treatment with this inhibitor resulted in a significant reduction in blood histamine levels in mice after IgE-Ag challenge. CONCLUSION The present data strongly suggest that the development of mitochondrial STAT3 inhibitors could serve as a potential treatment for allergy-associated diseases.
Collapse
Affiliation(s)
- T. H. Erlich
- Faculty of Medicine; The Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel-Canada; The Hebrew University; Jerusalem Israel
| | - I. Sharkia
- Faculty of Medicine; The Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel-Canada; The Hebrew University; Jerusalem Israel
| | - N. Landolina
- Faculty of Medicine; Pharmacology and Experimental Therapeutics Unit; School of Pharmacy; Institute for Drug Research; Hebrew University of Jerusalem; Jerusalem Israel
| | - M. Assayag
- The Institute of Pulmonary Medicine at Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - O. Goldberger
- Faculty of Medicine; The Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel-Canada; The Hebrew University; Jerusalem Israel
| | - N. Berkman
- The Institute of Pulmonary Medicine at Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - F. Levi-Schaffer
- Faculty of Medicine; Pharmacology and Experimental Therapeutics Unit; School of Pharmacy; Institute for Drug Research; Hebrew University of Jerusalem; Jerusalem Israel
| | - E. Razin
- Faculty of Medicine; The Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel-Canada; The Hebrew University; Jerusalem Israel
- Singapore-HUJI Alliance for Research and Enterprise; Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group; Campus for Research Excellence and Technological Enterprise; Singapore city Singapore
| |
Collapse
|
24
|
Ferrando M, Bagnasco D, Heffler E, Paoletti G, Passalacqua G, Puggioni F, Canonica GW. Personalizing the approach to asthma treatment. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1517024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Matteo Ferrando
- Allergy & Respiratory Diseases, IRCCS Policlinico San Martino Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Diego Bagnasco
- Allergy & Respiratory Diseases, IRCCS Policlinico San Martino Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy Clinic, Humanitas Research Hospital, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Giovanni Paoletti
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
- Department of Medical Sciences “M. Aresu”, Allergy and Clinical Immunology Unit, University of Cagliari, Cagliari, Italy
| | - Giovanni Passalacqua
- Allergy & Respiratory Diseases, IRCCS Policlinico San Martino Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy Clinic, Humanitas Research Hospital, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy Clinic, Humanitas Research Hospital, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
| |
Collapse
|
25
|
Han S, Ma C, Bao L, Lv L, Huang M. miR-146a Mimics Attenuate Allergic Airway Inflammation by Impacted Group 2 Innate Lymphoid Cells in an Ovalbumin-Induced Asthma Mouse Model. Int Arch Allergy Immunol 2018; 177:302-310. [PMID: 30134242 DOI: 10.1159/000491438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/21/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The prevalence of allergic asthma has increased dramatically. Previous studies have found that the microRNA 146a (miR-146a) expression in asthma inhibits cell proliferation and promotes apoptosis of bronchial smooth muscle cells. We aimed to investigate the effect of miR-146a mimics on ovalbumin (OVA)-induced asthma in a mouse model. METHODS Inflammatory cell infiltration in bronchoalveolar lavage fluid (BALF) was measured by flow cytometry. Levels of OVA-specific immunoglobulin E (IgE) in serum and cytokines in BALF were examined by enzyme-linked immunosorbent assay. For monitoring the airway, the Penh value (% baseline) was measured using a whole-body plethysmograph. RESULTS In OVA-induced asthmatic mice, miR-146a significantly suppressed the infiltration of inflammatory cells in BALF and decreased the levels of OVA-specific IgE and T helper 2 cell type cytokines. In addition, miR-146a inhibited the OVA-induced airway hyperresponsiveness and the group 2 innate lymphoid cell responses. Moreover, the effects of miR-146a mimics were dependent on interleukin 33 stimulation. CONCLUSIONS Our results suggest that miR-146a mimics might serve as an attractive candidate for further preclinical studies as an anti-inflammatory treatment of asthma.
Collapse
Affiliation(s)
- Shuguang Han
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Respiratory Medicine, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chenhui Ma
- Department of Respiratory Medicine, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Liang Bao
- Department of Respiratory Medicine, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Lei Lv
- Department of Respiratory Medicine, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mao Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
| |
Collapse
|