1
|
Chang YT, Prompsy P, Kimeswenger S, Tsai YC, Ignatova D, Pavlova O, Iselin C, French LE, Levesque MP, Kuonen F, Bobrowicz M, Brunner PM, Pascolo S, Hoetzenecker W, Guenova E. MHC-I upregulation safeguards neoplastic T cells in the skin against NK cell-mediated eradication in mycosis fungoides. Nat Commun 2024; 15:752. [PMID: 38272918 PMCID: PMC10810852 DOI: 10.1038/s41467-024-45083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated immune dysfunction is a major challenge for effective therapies. The emergence of antibodies targeting tumor cell-surface antigens led to advancements in the treatment of hematopoietic malignancies, particularly blood cancers. Yet their impact is constrained against tumors of hematopoietic origin manifesting in the skin. In this study, we employ a clonality-supervised deep learning methodology to dissect key pathological features implicated in mycosis fungoides, the most common cutaneous T-cell lymphoma. Our investigations unveil the prominence of the IL-32β-major histocompatibility complex (MHC)-I axis as a critical determinant in tumor T-cell immune evasion within the skin microenvironment. In patients' skin, we find MHC-I to detrimentally impact the functionality of natural killer (NK) cells, diminishing antibody-dependent cellular cytotoxicity and promoting resistance of tumor skin T-cells to cell-surface targeting therapies. Through murine experiments in female mice, we demonstrate that disruption of the MHC-I interaction with NK cell inhibitory Ly49 receptors restores NK cell anti-tumor activity and targeted T-cell lymphoma elimination in vivo. These findings underscore the significance of attenuating the MHC-I-dependent immunosuppressive networks within skin tumors. Overall, our study introduces a strategy to reinvigorate NK cell-mediated anti-tumor responses to overcome treatment resistance to existing cell-surface targeted therapies for skin lymphoma.
Collapse
Affiliation(s)
- Yun-Tsan Chang
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pacôme Prompsy
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Susanne Kimeswenger
- Department of Dermatology and Venerology, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Yi-Chien Tsai
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Desislava Ignatova
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Olesya Pavlova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christoph Iselin
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lars E French
- Department of Dermatology and Allergology, Ludwig-Maximilians-University of Munich, Munich, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - François Kuonen
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venerology, Medical Faculty, Johannes Kepler University, Linz, Austria.
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Department of Dermatology, Hospital 12 de Octubre, Medical School, University Complutense, Madrid, Spain.
| |
Collapse
|
2
|
Pelcovits A, Ollila TA, Olszewski AJ. Advances in Immunotherapy for the Treatment of Cutaneous T-Cell Lymphoma. Cancer Manag Res 2023; 15:989-998. [PMID: 37700809 PMCID: PMC10493109 DOI: 10.2147/cmar.s330908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Cutaneous T-Cell Lymphoma (CTCL) is a heterogenous disease that consists of distinct clinicopathologic entities and presentations requiring a unique and expert approach to management. The most common subtype is mycosis fungoides, in which local disease has an excellent prognosis and is often managed with topical therapy alone. More extensive cutaneous involvement as well as involvement of lymph nodes and the peripheral blood (Sezary syndrome) require systemic therapies. Recent years have brought an expansion of therapeutic options, specifically with immune-based approaches that were developed using the knowledge gained regarding the biology and molecular pathology of CTCL. Previous systemic therapies such as retinoids, histone deacetylase inhibitors, and chemotherapeutic agents come with significant toxicity and only short-term response. Newer agents such as mogamulizumab and brentuximab vedotin use a targeted immune-based approach leading to longer periods of response with less systemic toxicity. While still in its infancy, the use of immune checkpoint inhibitors such as nivolumab and pembrolizumab appears promising, and while their current clinical application is limited, early data suggest possible future areas for research of immune manipulation to treat CTCL. Herein, we review these novel immune-based treatment strategies, their superiority over prior systemic options, and the ongoing need for further research and clinical trial enrollment.
Collapse
Affiliation(s)
- Ari Pelcovits
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
- Division of Hematology-Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Thomas A Ollila
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
- Division of Hematology-Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Adam J Olszewski
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
- Division of Hematology-Oncology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
3
|
Immunotherapy targeting inhibitory checkpoints: The role of NK and other innate lymphoid cells. Semin Immunol 2022; 61-64:101660. [PMID: 36370672 DOI: 10.1016/j.smim.2022.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Monoclonal antibodies that target specific ligand-receptor signaling pathways and act as immune checkpoint inhibitors have been designed to remove the brakes in T cells and restore strong and long-term antitumor-immunity. Of note, many of these inhibitory receptors are also expressed by Innate Lymphoid Cells (ILCs), suggesting that also blockade of inhibitory pathways in innate lymphocytes has a role in the response to the treatment with checkpoint inhibitors. ILCs comprise cytotoxic NK cells and "helper" subsets and are important cellular components in the tumor microenvironment. In addition to killing tumor cells, ILCs release inflammatory cytokines, thus contributing to shape adaptive cell activation in the context of immunotherapy. Therefore, ILCs play both a direct and indirect role in the response to checkpoint blockade. Understanding the impact of ILC-mediated response on the treatment outcome would contribute to enhance immunotherapy efficacy, as still numerous patients resist or relapse.
Collapse
|
4
|
Khawar MB, Sun H. CAR-NK Cells: From Natural Basis to Design for Kill. Front Immunol 2022; 12:707542. [PMID: 34970253 PMCID: PMC8712563 DOI: 10.3389/fimmu.2021.707542] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors (CARs) are fusion proteins with an extracellular antigen recognition domain and numerous intracellular signaling domains that have been genetically modified. CAR-engineered T lymphocyte-based therapies have shown great success against blood cancers; however, potential fatal toxicity, such as in cytokine release syndrome, and high costs are some shortcomings that limit the clinical application of CAR-engineered T lymphocytes and remain to overcome. Natural killer (NK) cells are the focal point of current immunological research owing to their receptors that prove to be promising immunotherapeutic candidates for treating cancer. However, to date, manipulation of NK cells to treat malignancies has been moderately successful. Recent progress in the biology of NK cell receptors has greatly transformed our understanding of how NK cells recognize and kill tumor and infected cells. CAR-NK cells may serve as an alternative candidate for retargeting cancer because of their unique recognition mechanisms, powerful cytotoxic effects especially on cancer cells in both CAR-dependent and CAR-independent manners and clinical safety. Moreover, NK cells can serve as an ‘off-the-shelf product’ because NK cells from allogeneic sources can also be used in immunotherapies owing to their reduced risk of alloreactivity. Although ongoing fundamental research is in the beginning stages, this review provides an overview of recent developments implemented to design CAR constructs to stimulate NK activation and manipulate NK receptors for improving the efficiency of immunotherapy against cancer, summarizes the preclinical and clinical advances of CAR-NK cells against both hematological malignancies and solid tumors and confronts current challenges and obstacles of their applications. In addition, this review provides insights into prospective novel approaches that further enhance the efficiency of CAR-NK therapies and highlights potential questions that require to be addressed in the future.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou, Yangzhou, China.,Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan.,Laboratory of Molecular Biology & Genomics, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou, Yangzhou, China
| |
Collapse
|
5
|
Sugaya M. Clinical Guidelines and New Molecular Targets for Cutaneous Lymphomas. Int J Mol Sci 2021; 22:ijms222011079. [PMID: 34681738 PMCID: PMC8537763 DOI: 10.3390/ijms222011079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cutaneous lymphomas are heterogenous lymphoproliferative disorders. Some patients show rapid progression and the need for treatment of advanced disease is still unmet. The frequency of each subtype of cutaneous lymphoma varies among different ethnic groups, as do the medical systems found in different countries. It is important to know the differences in clinical guidelines in different areas of the world. Although current monochemotherapy with gemcitabine or pegylated liposomal doxorubicin is temporarily effective for mycosis funogides (MF) and Sézary syndrome (SS)-representative types of cutaneous lymphomas-the duration of response is usually limited. Therefore, treatment strategies targeting tumor-specific molecules have been developed. Molecular targets for MS/SS are currently CD30, CCR4, CD25, CD52, and histone deacetylases, most of which are surface molecules specifically expressed on tumor cells. As a result of advances in research techniques, different kinds of genomic alterations in MF/SS have been revealed. Molecular targets for MS/SS in the near future would be CD158k, JAK, PIK3, the mammalian target of rapamycin, and microRNAs, most of which mediate intracellular signaling pathways. Personalized therapy based on the detection of the genetic signatures of tumors and inhibition of the most suitable target molecules constitutes a future treatment strategy for MF/SS.
Collapse
Affiliation(s)
- Makoto Sugaya
- Department of Dermatology, International University of Health and Welfare, Chiba 286-8520, Japan
| |
Collapse
|
6
|
Rendón-Serna N, Correa-Londoño LA, Velásquez-Lopera MM, Bermudez-Muñoz M. Cell signaling in cutaneous T-cell lymphoma microenvironment: promising targets for molecular-specific treatment. Int J Dermatol 2021; 60:1462-1480. [PMID: 33835479 DOI: 10.1111/ijd.15451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) result from the infiltration and proliferation of a population of T cells in the skin, inducing changes in the activity of both T cells and surrounding skin cells. In the CTCL microenvironment, cell interactions mediated by cell signaling pathways are altered. Defining changes in cell signaling enables to understand T-cell deregulations in the CTCL microenvironment and thus the progression of the disease. Moreover, characterizing signaling networks activated in CTCL stages can lead to consider new molecular biomarkers and therapeutic targets. Focusing on mycosis fungoides (MF), the most frequent variant of CTCL, and Sézary syndrome (SS), its leukemic variant, this review highlights recent molecular and genetic findings revealing modifications of key signaling pathways involved in (1) cell proliferation, cell growth, and cell survival such as MAP kinases and PI3K/Akt; (2) immune responses derived from TCR, TLR, JAK/STAT, and NF-kB; and (3) changes in tissue conditions such as extracellular matrix remodeling, hypoxia, and angiogenesis. Alterations in these signaling networks promote malignant T-cell proliferation and survival, T-cell migration, inflammation, and suppression of immune regulation of malignant T cells, making a skin microenvironment that allows disease progression. Targeting key proteins of these signaling pathways, using molecules already available and used in research, in clinical trials, and with other disease indications, can open the way to different therapeutic options in CTCL treatment.
Collapse
Affiliation(s)
- Natalia Rendón-Serna
- Instituto de Biología, Universidad de Antioquia, Medellin, Colombia.,Centro de Investigaciones Dermatológicas CIDERM, Facultad de Medicina, Universidad De Antioquia, Medellin, Colombia
| | - Luis A Correa-Londoño
- Centro de Investigaciones Dermatológicas CIDERM, Facultad de Medicina, Universidad De Antioquia, Medellin, Colombia
| | - Margarita M Velásquez-Lopera
- Centro de Investigaciones Dermatológicas CIDERM, Facultad de Medicina, Universidad De Antioquia, Medellin, Colombia
| | - Maria Bermudez-Muñoz
- Instituto de Biología, Universidad de Antioquia, Medellin, Colombia.,Centro de Investigaciones Dermatológicas CIDERM, Facultad de Medicina, Universidad De Antioquia, Medellin, Colombia
| |
Collapse
|
7
|
Dizaji Asl K, Velaei K, Rafat A, Tayefi Nasrabadi H, Movassaghpour AA, Mahdavi M, Nozad Charoudeh H. The role of KIR positive NK cells in diseases and its importance in clinical intervention. Int Immunopharmacol 2021; 92:107361. [PMID: 33429335 DOI: 10.1016/j.intimp.2020.107361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells are essential for the elimination of the transformed and cancerous cells. Killer cell immunoglobulin-like receptors (KIRs) which expressed by T and NK cells, are key regulator of NK cell function. The KIR and their ligands, MHC class I (HLA-A, B and C) molecules, are highly polymorphic and their related genes are located on 19 q13.4 and 6 q21.3 chromosomes, respectively. It is clear that particular interaction between the KIRs and their related ligands can influence on the prevalence, progression and outcome of several diseases, like complications of pregnancy, viral infection, autoimmune diseases, and hematological malignancies. The mechanisms of immune signaling in particular NK cells involvement in causing pathological conditions are not completely understood yet. Therefore, better understanding of the molecular mechanism of KIR-MHC class I interaction could facilitate the treatment strategy of diseases. The present review focused on the main characteristics and functional details of various KIR and their combination with related ligands in diseases and also highlights ongoing efforts to manipulate the key checkpoints in NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Khadijeh Dizaji Asl
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rafat
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
8
|
Zhang C, Liu Y. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy. Front Immunol 2020; 11:1295. [PMID: 32714324 PMCID: PMC7344328 DOI: 10.3389/fimmu.2020.01295] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Checkpoint blockade therapy, for example using antibodies against CTLA-4 and PD-1/PD-L1, relieves T cells from the suppression by inhibitory checkpoints in the tumor microenvironment; thereby achieving good outcomes in the treatment of different cancer types. Like T cells, natural killer (NK) cell inhibitory receptors function as checkpoints for NK cell activation. Upon interaction with their cognate ligands on infected cells, tumor cells, dendritic cells and regulatory T cells, signals from these receptors severely affect NK cells' activation and effector functions, resulting in NK cell exhaustion. Checkpoint inhibition with antagonistic antibodies (Abs) can rescue NK cell exhaustion and arouse their robust anti-tumor capacity. Most notably, the response to anti-PD-1 therapy can be enhanced by the increased frequency and activation of NK cells, thereby increasing the overall survival of patients with multiple types of cancer. In addition, rescue of NK cell activity could enhance adaptive T cells' anti-tumor activity. Some antagonistic Abs (e.g., anti-TIGIT and anti-NKG2A monoclonal Abs) have extraordinary potential in cancer therapy, as evidenced by their induction of potent anti-tumor immunity through recovering both NK and T cell function. In this review, we summarize the dysfunction of NK cells in the tumor microenvironment and the key NK cell checkpoint receptors or molecules that control NK cell function. We particularly focus on recent advances in the most promising strategies through blockade of NK cell checkpoints or their combination with other approaches to more effectively reject tumors.
Collapse
Affiliation(s)
- Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Ben-Shmuel A, Biber G, Barda-Saad M. Unleashing Natural Killer Cells in the Tumor Microenvironment-The Next Generation of Immunotherapy? Front Immunol 2020; 11:275. [PMID: 32153582 PMCID: PMC7046808 DOI: 10.3389/fimmu.2020.00275] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of immunotherapy for cancer treatment bears considerable clinical promise. Nevertheless, many patients remain unresponsive, acquire resistance, or suffer dose-limiting toxicities. Immune-editing of tumors assists their escape from the immune system, and the tumor microenvironment (TME) induces immune suppression through multiple mechanisms. Immunotherapy aims to bolster the activity of immune cells against cancer by targeting these suppressive immunomodulatory processes. Natural Killer (NK) cells are a heterogeneous subset of immune cells, which express a diverse array of activating and inhibitory germline-encoded receptors, and are thus capable of directly targeting and killing cancer cells without the need for MHC specificity. Furthermore, they play a critical role in triggering the adaptive immune response. Enhancing the function of NK cells in the context of cancer is therefore a promising avenue for immunotherapy. Different NK-based therapies have been evaluated in clinical trials, and some have demonstrated clinical benefits, especially in the context of hematological malignancies. Solid tumors remain much more difficult to treat, and the time point and means of intervention of current NK-based treatments still require optimization to achieve long term effects. Here, we review recently described mechanisms of cancer evasion from NK cell immune surveillance, and the therapeutic approaches that aim to potentiate NK function. Specific focus is placed on the use of specialized monoclonal antibodies against moieties on the cancer cell, or on both the tumor and the NK cell. In addition, we highlight newly identified mechanisms that inhibit NK cell activity in the TME, and describe how biochemical modifications of the TME can synergize with current treatments and increase susceptibility to NK cell activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Walia R, Yeung CCS. An Update on Molecular Biology of Cutaneous T Cell Lymphoma. Front Oncol 2020; 9:1558. [PMID: 32039026 PMCID: PMC6987372 DOI: 10.3389/fonc.2019.01558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cutaneous T cell lymphomas represent a heterogenous group of lymphoproliferative disorders defined by clonal proliferation of T cells present in the skin. The latest WHO classification in 2016 and WHO-EORTC classification in 2018 has updated the classification of these entities based on the molecular profile. Research in the field of molecular genetics of CTCL has allowed a better understanding of the biology of these tumors and has helped to identify potential targets for therapy that can be tailored to individual patients. In this review, we discuss the latest developments in the molecular profile of CTCLs including biomarkers for diagnosis, prognosis, and potential therapeutic targets. We have also touched upon the utility of various molecular diagnostic modalities. For the purpose of this review, we researched papers in PubMed indexed journals in English literature published in the past 20 years using keywords CTCL, mycosis fungoides, molecular profile, molecular diagnosis, whole genome profile, genomic landscape, TCR clonality.
Collapse
Affiliation(s)
- Ritika Walia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Cecilia C S Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Khan S, Sawas A. Antibody-Directed Therapies: Toward a Durable and Tolerable Treatment Platform for CTCL. Front Oncol 2019; 9:645. [PMID: 31417860 PMCID: PMC6683760 DOI: 10.3389/fonc.2019.00645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are a rare group of heterogeneous disorders characterized by cutaneous involvement of monoclonal T-lymphocytes. Although indolent at early stages, CTCL can confer significant morbidity, and mortality when advanced. There is an unmet need for tolerable and durable treatments with antibodies recently gaining promise. Here we review approved systemic therapies and discuss select antibodies in development.
Collapse
Affiliation(s)
- Shaheer Khan
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, The New York Presbyterian Hospital, College of Physician and Surgeons, New York, NY, United States
| | - Ahmed Sawas
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, The New York Presbyterian Hospital, College of Physician and Surgeons, New York, NY, United States
| |
Collapse
|
12
|
Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, Bertaina A, Moretta F, Del Zotto G, Pietra G, Mingari MC, Locatelli F, Moretta L. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Front Immunol 2019; 10:1179. [PMID: 31231370 PMCID: PMC6558367 DOI: 10.3389/fimmu.2019.01179] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells contribute to the first line of defense against viruses and to the control of tumor growth and metastasis spread. The discovery of HLA class I specific inhibitory receptors, primarily of killer Ig-like receptors (KIRs), and of activating receptors has been fundamental to unravel NK cell function and the molecular mechanisms of tumor cell killing. Stemmed from the seminal discoveries in early '90s, in which Alessandro Moretta was the major actor, an extraordinary amount of research on KIR specificity, genetics, polymorphism, and repertoire has followed. These basic notions on NK cells and their receptors have been successfully translated to clinical applications, primarily to the haploidentical hematopoietic stem cell transplantation to cure otherwise fatal leukemia in patients with no HLA compatible donors. The finding that NK cells may express the PD-1 inhibitory checkpoint, particularly in cancer patients, may allow understanding how anti-PD-1 therapy could function also in case of HLA class Ineg tumors, usually susceptible to NK-mediated killing. This, together with the synergy of therapeutic anti-checkpoint monoclonal antibodies, including those directed against NKG2A or KIRs, emerging in recent or ongoing studies, opened new solid perspectives in cancer therapy.
Collapse
Affiliation(s)
- Daniela Pende
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Massimo Vitale
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
- Department of Experimental Medicine (DIMES), Center of Excellence for Biomedical Research, Università di Genova, Genoa, Italy
| | - Chiara Vitale
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Università di Genova, Genoa, Italy
| | - Enrico Munari
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Alice Bertaina
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics Stanford School of Medicine, Stanford, CA, United States
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Genny Del Zotto
- Core Facilities, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Gabriella Pietra
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Università di Genova, Genoa, Italy
| | - Maria Cristina Mingari
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Center of Excellence for Biomedical Research, Università di Genova, Genoa, Italy
| | - Franco Locatelli
- Department of Oncohematology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|