1
|
Cerchia C, Küfner L, Werz O, Lavecchia A. Identification of selective 5-LOX and FLAP inhibitors as novel anti-inflammatory agents by ligand-based virtual screening. Eur J Med Chem 2024; 263:115932. [PMID: 37976708 DOI: 10.1016/j.ejmech.2023.115932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Inflammation is a multifaceted biological process in which the conversion of arachidonic acid to eicosanoids, including prostaglandins and leukotrienes (LTs), plays a crucial role. 5-Lipoxygenase (5-LOX) is a key enzyme in cellular LT biosynthesis, and it is supported by the accessory protein 5-lipoxygenase-activating protein (FLAP). Pharmacological interventions to modulate LTs aim at either decreasing their biosynthesis or at mitigating their biological effects. Therefore, inhibiting 5-LOX or FLAP represents a useful strategy to reduce inflammation. Herein we present the identification and pharmacological evaluation of novel inhibitors targeting 5-LOX or FLAP. By means of a ligand-based virtual screening approach, we selected 38 compounds for in vitro assays. Among them, ALR-38 exhibits direct 5-LOX inhibition, while ALR-6 and ALR-27 showed potential as FLAP inhibitors. These latter not only reduced LT production but also promoted the generation of specialized pro-resolving mediators in specific human macrophage phenotypes. Interestingly, the identified compounds turned out to be selective for their respective targets, as none of them displayed activity towards microsomal prostaglandin E2 synthase-1 and soluble epoxide hydrolase, which are other proteins involved in eicosanoid biosynthesis. Thus, these compounds are endowed with potential therapeutic utility in mitigating inflammatory responses and might offer a venue for tackling inflammation-based disorders.
Collapse
Affiliation(s)
- Carmen Cerchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - Laura Küfner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743, Jena, Germany.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
3
|
Orouji E, Raman AT, Singh AK, Sorokin A, Arslan E, Ghosh AK, Schulz J, Terranova CJ, Jiang S, Tang M, Maitituoheti M, Barrodia P, Jiang Y, Callahan SC, Tomczak KJ, Jiang Z, Davis JS, Ghosh S, Lee HM, Reyes-Uribe L, Chang K, Liu Y, Chen H, Azhdarnia A, Morris JS, Vilar E, Carmon KS, Kopetz S, Rai K. Chromatin state dynamics confers specific therapeutic strategies in enhancer subtypes of colorectal cancer. Gut 2022; 71:938-949. [PMID: 34059508 PMCID: PMC8745382 DOI: 10.1136/gutjnl-2020-322835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Enhancer aberrations are beginning to emerge as a key epigenetic feature of colorectal cancers (CRC), however, a comprehensive knowledge of chromatin state patterns in tumour progression, heterogeneity of these patterns and imparted therapeutic opportunities remain poorly described. DESIGN We performed comprehensive epigenomic characterisation by mapping 222 chromatin profiles from 69 samples (33 colorectal adenocarcinomas, 4 adenomas, 21 matched normal tissues and 11 colon cancer cell lines) for six histone modification marks: H3K4me3 for Pol II-bound and CpG-rich promoters, H3K4me1 for poised enhancers, H3K27ac for enhancers and transcriptionally active promoters, H3K79me2 for transcribed regions, H3K27me3 for polycomb repressed regions and H3K9me3 for heterochromatin. RESULTS We demonstrate that H3K27ac-marked active enhancer state could distinguish between different stages of CRC progression. By epigenomic editing, we present evidence that gains of tumour-specific enhancers for crucial oncogenes, such as ASCL2 and FZD10, was required for excessive proliferation. Consistently, combination of MEK plus bromodomain inhibition was found to have synergistic effects in CRC patient-derived xenograft models. Probing intertumour heterogeneity, we identified four distinct enhancer subtypes (EPIgenome-based Classification, EpiC), three of which correlate well with previously defined transcriptomic subtypes (consensus molecular subtypes, CMSs). Importantly, CMS2 can be divided into two EpiC subgroups with significant survival differences. Leveraging such correlation, we devised a combinatorial therapeutic strategy of enhancer-blocking bromodomain inhibitors with pathway-specific inhibitors (PARPi, EGFRi, TGFβi, mTORi and SRCi) for EpiC groups. CONCLUSION Our data suggest that the dynamics of active enhancer underlies CRC progression and the patient-specific enhancer patterns can be leveraged for precision combination therapy.
Collapse
Affiliation(s)
- Elias Orouji
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Present address: Epigenetics Initiative, Princess Margaret Genomics Centre, Toronto, ON, Canada
| | - Ayush T. Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA,Present address: Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anand K. Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Emre Arslan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Archit K. Ghosh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher J. Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Praveen Barrodia
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingda Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S. Carson Callahan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katarzyna J. Tomczak
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiqin Jiang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Jennifer S. Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sukhen Ghosh
- Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hey Min Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle Chang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yusha Liu
- Department of Bioinformatics and Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiqin Chen
- Department of Bioinformatics and Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali Azhdarnia
- Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jeffrey S. Morris
- Department of Bioinformatics and Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Present address: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kendra S. Carmon
- Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA .,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Denegri A, Boriani G. High Sensitivity C-reactive Protein (hsCRP) and its Implications in Cardiovascular Outcomes. Curr Pharm Des 2021; 27:263-275. [PMID: 32679014 DOI: 10.2174/1381612826666200717090334] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis and its fearsome complications represent the first cause of morbidity and mortality worldwide. Over the last two decades, several pieces of evidence have been accumulated, suggesting a central role of inflammation in atheroma development. High sensitivity C-reactive protein (hsCRP) is a well-established marker of cardiovascular (CV) disease; high levels of hsCRP have been associated with adverse CV outcome after acute coronary syndrome (ACS) and, despite some controversy, an active role for hsCRP in initiation and development of the atherosclerotic plaque has been also proposed. Randomized clinical trials focusing on hsCRP have been crucial in elucidating the anti-inflammatory effects of statin therapy. Thus, hsCRP has been progressively considered a real CV risk factor likewise to low-density lipoprotein cholesterol (LDL-C), expanding the concept of residual CV inflammatory risk. Subsequent research has been designed to investigate potential new targets of atherothrombotic protection. Despite the fact that the clinical usefulness of hsCRP is widely recognized, hsCRP may not represent the ideal target of specific anti-inflammatory therapies. Clinical investigations, therefore, have also focused on other inflammatory mediators, restricting hsCRP to an indicator rather than a therapeutic target. The aim of the present review is to provide an illustrative overview of the current knowledge of atherosclerosis and inflammation, highlighting the most representative clinical studies of lipid-lowering and antiinflammatory therapies focused on hsCRP in CV diseases.
Collapse
Affiliation(s)
- Andrea Denegri
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, Largo del Pozzo, 71, 41125, Modena, Italy
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, Largo del Pozzo, 71, 41125, Modena, Italy
| |
Collapse
|
6
|
Rout A, Tantry US, Novakovic M, Sukhi A, Gurbel PA. Targeted pharmacotherapy for ischemia reperfusion injury in acute myocardial infarction. Expert Opin Pharmacother 2020; 21:1851-1865. [PMID: 32659185 DOI: 10.1080/14656566.2020.1787987] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Achieving reperfusion immediately after acute myocardial infarction improves outcomes; despite this, patients remain at a high risk for mortality and morbidity at least for the first year after the event. Ischemia-reperfusion injury (IRI) has a complex pathophysiology and plays an important role in myocardial tissue injury, repair, and remodeling. AREAS COVERED In this review, the authors discuss the various mechanisms and their pharmacological agents currently available for reducing myocardial ischemia-reperfusion injury (IRI). They review important original investigations and trials in various clinical databases for treatments targeting IRI. EXPERT OPINION Encouraging results observed in many preclinical studies failed to show similar success in attenuating myocardial IRI in large-scale clinical trials. Identification of critical risk factors for IRI and targeting them individually rather than one size fits all approach should be the major focus of future research. Various newer therapies like tocilizumab, anakinra, colchicine, revacept, and therapies targeting the reperfusion injury salvage kinase pathway, survivor activating factor enhancement, mitochondrial pathways, and angiopoietin-like peptide 4 hold promise for the future.
Collapse
Affiliation(s)
- Amit Rout
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Marko Novakovic
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Ajaypaul Sukhi
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| |
Collapse
|