1
|
Zhang C, Zhai W, Ma Y, Wu M, Cai Q, Huang J, Zhou Z, Duan F. Integrating machine learning algorithms and multiple immunohistochemistry validation to unveil novel diagnostic markers based on costimulatory molecules for predicting immune microenvironment status in triple-negative breast cancer. Front Immunol 2024; 15:1424259. [PMID: 39007147 PMCID: PMC11239375 DOI: 10.3389/fimmu.2024.1424259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Costimulatory molecules are putative novel targets or potential additions to current available immunotherapy, but their expression patterns and clinical value in triple-negative breast cancer (TNBC) are to be clarified. Methods The gene expression profiles datasets of TNBC patients were obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Diagnostic biomarkers for stratifying individualized tumor immune microenvironment (TIME) were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. Additionally, we explored their associations with response to immunotherapy via the multiplex immunohistochemistry (mIHC). Results A total of 60 costimulatory molecule genes (CMGs) were obtained, and we determined two different TIME subclasses ("hot" and "cold") through the K-means clustering method. The "hot" tumors presented a higher infiltration of activated immune cells, i.e., CD4 memory-activated T cells, resting NK cells, M1 macrophages, and CD8 T cells, thereby enriched in the B cell and T cell receptor signaling pathways. LASSO and SVM-RFE algorithms identified three CMGs (CD86, TNFRSF17 and TNFRSF1B) as diagnostic biomarkers. Following, a novel diagnostic nomogram was constructed for predicting individualized TIME status and was validated with good predictive accuracy in TCGA, GSE76250 and GSE58812 databases. Further mIHC conformed that TNBC patients with high CD86, TNFRSF17 and TNFRSF1B levels tended to respond to immunotherapy. Conclusion This study supplemented evidence about the value of CMGs in TNBC. In addition, CD86, TNFRSF17 and TNFRSF1B were found as potential biomarkers, significantly promoting TNBC patient selection for immunotherapeutic guidance.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenyu Zhai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuyu Ma
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Minqing Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiaoting Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiajia Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhihuan Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fangfang Duan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol 2023; 16:100. [PMID: 37641116 PMCID: PMC10464091 DOI: 10.1186/s13045-023-01497-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody-drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Chang X, Liu J, Yang Q, Gao Y, Ding X, Zhao J, Li Y, Liu Z, Li Z, Wu Y, Zuo D. Targeting HMGA1 contributes to immunotherapy in aggressive breast cancer while suppressing EMT. Biochem Pharmacol 2023; 212:115582. [PMID: 37146833 DOI: 10.1016/j.bcp.2023.115582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Metastasis is an obstacle to the clinical treatment of aggressive breast cancer (BC). Studies have shown that high mobility group A1 (HMGA1) is abnormally expressed in various cancers and mediates tumor proliferation and metastasis. Here, we provided more evidence that HMGA1 mediated epithelial to mesenchymal transition (EMT) through the Wnt/β-catenin pathway in aggressive BC. More importantly, HMGA1 knockdown enhanced antitumor immunity and improved the response to immune checkpoint blockade (ICB) therapy by upregulating programmed cell death ligand 1 (PD-L1) expression. Simultaneously, we revealed a novel mechanism by which HMGA1 and PD-L1 were regulated by the PD-L1/HMGA1/Wnt/β-catenin negative feedback loop in aggressive BC. Taken together, we believe that HMGA1 can serve as a target for the dual role of anti-metastasis and enhancing immunotherapeutic responses.
Collapse
Affiliation(s)
- Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jingang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qian Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yu Gao
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, 116033, China
| | - Xiaofei Ding
- Department of pharmacology, School of Medicine, Taizhou University, 1139 Shi-Fu Avenue, Taizhou 318000, China
| | - Junjun Zhao
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, 116033, China
| | - Yang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
4
|
Geurts V, Kok M. Immunotherapy for Metastatic Triple Negative Breast Cancer: Current Paradigm and Future Approaches. Curr Treat Options Oncol 2023; 24:628-643. [PMID: 37079257 PMCID: PMC10172210 DOI: 10.1007/s11864-023-01069-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 04/21/2023]
Abstract
OPINION STATEMENT In approximately 15-20% of the patients diagnosed with breast cancer, it comprises the triple negative (TN) subtype, which until recently lacked targets for specific treatments and is known for its aggressive clinical behavior in patients with metastatic disease. TNBC is considered the most immunogenic breast cancer subtype due to higher levels of tumor infiltrating lymphocytes (TILs), tumor mutational burden and PD-L1 expression, providing a rationale for immunotherapy. The addition of pembrolizumab to chemotherapy as first-line treatment resulted in significantly improved PFS and OS for PD-L1 positive mTNBC, leading to FDA approval. However, response rate of ICB in unselected patients is low. Ongoing (pre)clinical trials aim to further optimize ICB efficacy and widen its application beyond PD-L1 positive breast tumors. Novel immunomodulatory approaches to induce a more inflamed tumor microenvironment include dual checkpoint blockade, bispecific antibodies, immunocytokines, adoptive cell therapies, oncolytic viruses, and cancer vaccines. Preclinical data for these novel strategies seems promising, but solid clinical data to further support its application for mTNBC is awaited. Biomarkers capturing the degree of immunogenicity such as but not limited to TILs, CD8 T cell levels, and IFNg signatures could support deciding which therapeutic strategy is most appropriate for which patient. Given 1) the accumulating therapy options for patients with metastatic disease and 2) the heterogeneity of mTNBC from inflamed to immune-desert tumors, the challenge is to work towards immunomodulatory strategies for specific subgroups of patients with TNBC to enable personalized (immuno)therapy for patients with metastatic disease.
Collapse
Affiliation(s)
- Veerle Geurts
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Marleen Kok
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Corti C, Venetis K, Sajjadi E, Zattoni L, Curigliano G, Fusco N. CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress. Expert Opin Investig Drugs 2022; 31:593-605. [PMID: 35311430 DOI: 10.1080/13543784.2022.2054326] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Most breast cancer-related deaths arise from triple-negative breast cancer (TNBC). Molecular heterogeneity, aggressiveness and the lack of effective therapies are major hurdles to therapeutic progress. Chimeric antigen receptor (CAR)-T cells have emerged as a promising immunotherapeutic strategy in TNBC. This approach combines the antigen specificity of an antibody with the effector function of T cells. AREAS COVERED This review examines the opportunities provided by CAR-T cell therapies in solid tumors. Emerging targets, ongoing clinical trials, and prospective clinical implications in TNBC are considered later. An emphasis is placed on the key challenges and possible solutions for this therapeutic approach. EXPERT OPINION A challenge for CAR-T cell therapy is the selection of the optimal targets to minimize on-target/off-tumor toxicity. Tumor escape via antigen loss and intrinsic heterogeneity is a further hurdle. TROP2, GD2, ROR1, MUC1 and EpCAM are promising targets. Persistence and trafficking to tumor cells may be enhanced by the implementation of CARs with a chemokine receptor and/or constitutively activated interleukin receptors. Fourth-generation CARs (TRUCKs) may redirect T-cells for universal cytokine-mediated killing. Combinatorial approaches and the application of CARs to other immune cells could revert the suppressive immune environment that characterizes solid neoplasms.
Collapse
Affiliation(s)
- Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Zattoni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
6
|
Tarantino P, Barroso-Sousa R, Garrido-Castro AC, McAllister SS, Guerriero JL, Mittendorf E, Curigliano G, Tolaney SM. Understanding resistance to immune checkpoint inhibitors in advanced breast cancer. Expert Rev Anticancer Ther 2021; 22:141-153. [PMID: 34919490 DOI: 10.1080/14737140.2022.2020650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The addition of immune checkpoint inhibitors (ICIs) to frontline chemotherapy has improved survival for patients with advanced triple-negative breast cancer (TNBC) expressing programmed death-ligand 1 (PD-L1). Nonetheless, most patients develop resistance, with outcomes remaining poor for this population. Moreover, unsatisfactory activity has been observed with ICIs in PD-L1-negative TNBC and in other breast cancer (BC) subtypes, warranting a deeper understanding of resistance to ICIs in BC. AREAS COVERED We discuss the immune landscape of distinct BC subtypes, review the clinical activity of immunotherapy in BC, and highlight strategies under development to overcome resistance to ICIs. EXPERT OPINION Activity and resistance to ICIs in BC are strongly related to the intrinsic immunophenotype of the tumor tissue. Several promising biomarkers reflecting the immunological state of BC are emerging, with only PD-L1 expression currently adopted into clinical practice. However, limitations make of PD-L1 a sub-optimal biomarker for patient selection, which require efforts to integrate this marker with other immunological features. Concomitantly, a wide variety of drug combinations designed to overcome immune-resistance are being evaluated, with some encouraging signals observed in early-phase trials. Combination strategies tailored to patient and tumor immunophenotype may allow to overcome resistance and fully exploit the potential of ICIs.
Collapse
Affiliation(s)
- Paolo Tarantino
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Breast Oncology Program Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Ana C Garrido-Castro
- Breast Oncology Program Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Sandra S McAllister
- Harvard Medical School, Boston, MA, USA.,Hematology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer L Guerriero
- Breast Oncology Program Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Elizabeth Mittendorf
- Breast Oncology Program Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sara M Tolaney
- Breast Oncology Program Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Corti C, Nicolò E, Curigliano G. Novel immune targets for the treatment of triple-negative breast cancer. Expert Opin Ther Targets 2021; 25:815-834. [PMID: 34763593 DOI: 10.1080/14728222.2021.2006187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION To overcome mechanisms of primary and secondary resistance to the anti-tumor immune response, novel targets such as ICOS, LAG3, and TIM3 are currently being explored at preclinical and early-phase clinical levels. AREAS COVERED This article examines the landscape of the immune therapeutics investigated in early-phase clinical trials for TNBC. Preclinical rationale is provided for each immune target, predominant expression, and function. Clinical implications and preliminary available trial results are discussed and finally, we reflect on aspects of future expectations and challenges in this field. EXPERT OPINION Several immune strategies have been investigated in TNBC, including co-inhibitory molecules beyond PD1-PD-L1 axis, co-stimulatory checkpoints, cancer vaccines, adoptive cell transfer, combination therapies, as well as different routes of administration. Most of approaches showed signs of anti-cancer activity and a good safety profile in early-phase clinical trials. Since IO provided benefit only to a small subgroup of TNBC patients so far, identifying predictive biomarkers is a priority to refine patient-selection. Data from ongoing clinical trials, with the gradually improving interpretation of the breast tumor immune environment, will hopefully refine the role of new immune targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| |
Collapse
|