1
|
Jarrar QB, Hakim MN, Zakaria ZA, Cheema MS, Moshawih S. Renal ultrastructural alterations induced by various preparations of mefenamic acid. Ultrastruct Pathol 2020; 44:130-140. [PMID: 31967489 DOI: 10.1080/01913123.2020.1717705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mefenamic acid (MFA) treatment is associated with a number of cellular effects that potentiate the incidence of renal toxicity. The aim of this study is to investigate the potential ultrastructural alterations induced by various preparations of MFA (free MFA, MFA-Tween 80 liposomes, and MFA-DDC liposomes) on the renal tissues. Sprague-Dawley rats were subjected to a daily dose of MFA preparations for 28 days. Renal biopsies from all groups of rats under study were processed for transmission electron microscopic examination. The findings revealed that MFA preparations induced various ultrastructural alterations including mitochondrial injury, nuclear and lysosomal alterations, tubular cells steatosis, apoptotic activity, autophagy, and nucleophagy. These alterations were more clear in rats received free MFA, and MFA-Tween 80 liposomes than those received MFA-DDC liposomes. It is concluded that MFA-DDC liposomes are less potential to induce renal damage than free MFA and MFA-Tween 80 liposomes. Thus, MFA-DDC liposomes may offer an advantage of safe drug delivery.
Collapse
Affiliation(s)
- Qais Bashir Jarrar
- Department of Applied Pharmaceutical Sciences, Faculty of Pharmacy, Al-Isra University, Amman, Jordan.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Nazrul Hakim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Said Moshawih
- Jordan Center for Pharmaceutical Research, Amman, Jordan
| |
Collapse
|
2
|
Wang X, Chen H, Chang C, Jiang M, Wang X, Xu L. Study the therapeutic mechanism of Amomum compactum in gentamicin-induced acute kidney injury rat based on a back propagation neural network algorithm. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1040:81-88. [DOI: 10.1016/j.jchromb.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/19/2016] [Accepted: 12/03/2016] [Indexed: 01/08/2023]
|
3
|
Betton GR, Ennulat D, Hoffman D, Gautier JC, Harpur E, Pettit S. Biomarkers of Collecting Duct Injury in Han-Wistar and Sprague-Dawley Rats Treated with N-Phenylanthranilic Acid. Toxicol Pathol 2012; 40:682-94. [DOI: 10.1177/0192623311436174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
N-phenylanthranilic acid is a chloride channel blocker that causes renal papillary necrosis in rats. Studies were conducted in two strains of male rats to evaluate novel biomarkers of nephrotoxicity. Han-Wistar rats were given daily oral doses of 50, 350, or up to 700 mg/kg/day of NPAA, and Sprague-Dawley rats were given 50 or 400 mg/kg/day of NPAA. Rats were euthanized on days 8 and 15. The candidate kidney injury biomarkers renal papillary antigen-1 (RPA-1, for collecting duct injury), clusterin (for general kidney injury), α-glutathione-S-transferase (a proximal tubular marker), and µ-glutathione-S-transferase (a distal tubular marker) were measured in urine by enzyme immunoassay. Characteristic degeneration and necrosis of the collecting duct and renal papilla were observed in Han-Wistar rats at the high dose on day 8 and at the mid and high doses on day 15, and in Sprague-Dawley rats given the high dose on days 8 and 15. Increases in urinary RPA-1, and to a lesser extent urine clusterin, were generally associated with the presence of collecting duct injury and were more sensitive than BUN and serum creatinine. On the other hand, decreases in α-glutathione-S-transferase without proximal tubule lesions in both strains and decreases in µ-glutathione-S-transferase in Sprague-Dawley rats only were not associated with morphological proximal or distal tubule abnormalities, so both were of less utility. It was concluded that RPA-1 is a new biomarker with utility in the detection of collecting duct injury in papillary necrosis in male rats.
Collapse
|
4
|
Thompson KL, Haskins K, Rosenzweig BA, Stewart S, Zhang J, Peters D, Knapton A, Rouse R, Mans D, Colatsky T. Comparison of the Diagnostic Accuracy of Di-22:6-Bis(monoacylglycerol)Phosphate and Other Urinary Phospholipids for Drug-Induced Phospholipidosis or Tissue Injury in the Rat. Int J Toxicol 2012; 31:14-24. [DOI: 10.1177/1091581811430167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cationic amphiphilic drugs and aminoglycoside antibiotics can induce phospholipidosis (PLD), an abnormal accumulation of phospholipids in lysosome-derived vesicles, in preclinical studies. The incidence of PLD in patients and its clinical relevance are difficult to assess without noninvasive biomarkers. Di-docosahexaenoyl bis(monoacylglycerol)phosphate (di-22:6-BMP) is a phospholipid that is enriched in lysosomal membranes and a proposed urinary biomarker of drug-induced PLD. The specificity of di-22:6-BMP for PLD was compared to other phospholipid species that can increase in urine with nephrotoxicity. Using liquid chromatography coupled to mass spectrometry, 12 phospholipids were assayed in the urine of rats treated with drugs that induced PLD or caused renal or skeletal muscle injury. In receiver operating curve analyses, urinary di-22:6-BMP was a significantly better predictor of PLD and the least predictive of tissue injury of the phospholipids assayed. The data provide evidence supporting the use of di-22:6-BMP as a urinary biomarker of PLD in rats.
Collapse
Affiliation(s)
- Karol L. Thompson
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Kylie Haskins
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
- Present address: Emergent Biosolutions, Rockville, MD, USA
| | - Barry A. Rosenzweig
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Sharron Stewart
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Jun Zhang
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - David Peters
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Alan Knapton
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Rodney Rouse
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Daniel Mans
- Division of Pharmaceutical Analysis, CDER, FDA, St. Louis, MO, USA
| | - Thomas Colatsky
- Division of Drug Safety Research, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| |
Collapse
|
5
|
Gaganis P, Miners JO, Knights KM. Glucuronidation of fenamates: Kinetic studies using human kidney cortical microsomes and recombinant UDP-glucuronosyltransferase (UGT) 1A9 and 2B7. Biochem Pharmacol 2007; 73:1683-91. [PMID: 17343829 DOI: 10.1016/j.bcp.2007.01.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/23/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Mefenamic acid, a non-steroidal anti-inflammatory drug (NSAID), is used commonly to treat menorrhagia. This study investigated the glucuronidation kinetics of flufenamic, mefenamic and niflumic acid using human kidney cortical microsomes (HKCM) and recombinant UGT1A9 and UGT2B7. Using HKCM Michaelis-Menten (MM) kinetics were observed for mefenamic (K(m)(app) 23 microM) and niflumic acid (K(m)(app) 123 microM) glucuronidation, while flufenamic acid exhibited non-hyperbolic (atypical) glucuronidation kinetics. Notably, the intrinsic renal clearance of mefenamic acid (CL(int) 17+/-5.5 microL/minmg protein) was fifteen fold higher than that of niflumic acid (CL(int) 1.1+/-0.8 microL/minmg protein). These data suggest that renal glucuronidation of mefenamic acid may result in high intrarenal exposure to mefenamic acyl-glucuronide and subsequent binding to renal proteins. Diverse kinetics were observed for fenamate glucuronidation by UGT2B7 and UGT1A9. Using UGT2B7 MM kinetics were observed for flufenamic (K(m)(app) 48 microM) and niflumic acid (K(m)(app) 135 microM) glucuronidation and atypical kinetics with mefenamic acid. Similarity in K(m)(app) between HKCM and UGT2B7 suggests that UGT2B7 may be the predominant renal UGT isoform catalysing niflumic acid glucuronidation. In contrast, UGT1A9 glucuronidation kinetics were characterised by negative cooperativity with mefenamic (S(50) 449 microM, h 0.4) and niflumic acid (S(50) 7344 microM, h 0.4) while atypical kinetics were observed with flufenamic acid. Additionally, potent inhibition of the renal glucuronidation of the UGT substrate 'probe' 4-methylumbelliferone by flufenamic, mefenamic and niflumic acid was observed. These data suggest that inhibitory metabolic interactions may occur between fenamates and other substrates metabolised by UGT2B7 and UGT1A9 in human kidney.
Collapse
Affiliation(s)
- Paraskevi Gaganis
- Department of Clinical Pharmacology, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | | | | |
Collapse
|
6
|
Abstract
The ICH S7A (Safety Pharmacology for Human Pharmaceuticals) guidelines specify that potential adverse pharmacologic effects of a test substance on renal function should be evaluated in supplemental studies when there is a cause for concern (ICH, 2001). For the most part, this can easily be accomplished by examination of the appropriate analytes in urine and blood collected as part of the routine preclinical safety studies. This review will serve as an overview of the selection, interpretation and limitations of standard clinical pathology methods (serum chemistry and urinalysis) for assessment of renal function in such studies, as well as provide some information on emerging biomarkers of renal function.
Collapse
|