1
|
Zhao Z, Nian M, Lv H, Yue J, Qiao H, Yang X, Zheng X. Advances in Anti-Osteoporosis Polysaccharides Derived from Medicinal Herbs and Other Edible Substances. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:441-470. [PMID: 35021963 DOI: 10.1142/s0192415x22500173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Osteoporosis is a common metabolic bone disease, and treatment is required for the prevention of low bone mass, deterioration of microstructural bone tissue, and fragility fractures. Osteoporosis therapy includes calcium, vitamin D, and drugs with antiresorptive or anabolic action on the bone. Therapy for osteoporosis does not include taking non-steroidal anti-inflammatory drugs (NSAID), but pain associated with osteoporotic fractures can be treated by taking non-steroidal anti-inflammatory drugs (NSAID). Recently, polysaccharides extracted from medicinal herbs and edible substances (PsMHES) have attracted attention on account of their safety and promising anti-osteoporosis effects, whereas a systematic review about their potential in anti-osteoporosis is vacant to date. Herein, we reviewed the recent progress of PsMHES with anti-osteoporosis activities, looking to introduce the advances in the various pharmacological mechanisms and targets involved in the anti-osteoporosis effects, extraction methods, main mechanism involved in Wnt/[Formula: see text]-catenin pathways and RANKL (Receptor Activator for NF[Formula: see text]B ligand or TNFSF25) pathways, and Structure-Activity Relationships (SAR) analysis of PsMHES. Typical herbs likeAchyranthes bidentate and Morinda officinalis used for the treatment of osteoporosis are introduced; their traditional uses in traditional Chinese medicine (TCM) are discussed in this paper as well. This review will help to the recognition of the value of PsMHES in anti-osteoporosis and provide guidance for the research and development of new anti-osteoporosis agents in clinic.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Meng Nian
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Hong Lv
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Haifa Qiao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Xiaohang Yang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province Northwest University, 229 Taibai Road, Xi'an 710069, P. R. China
| |
Collapse
|
2
|
Wang X, He Y, Guo B, Tsang MC, Tu F, Dai Y, Yao Z, Zheng L, Xie X, Wang N, Yao X, Zhang G, Qin L. In vivo screening for anti-osteoporotic fraction from extract of herbal formula Xianlinggubao in ovariectomized mice. PLoS One 2015; 10:e0118184. [PMID: 25695519 PMCID: PMC4335011 DOI: 10.1371/journal.pone.0118184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background and Objectives Traditional Chinese Medicine (TCM) Fufang or formula Xianlinggubao (XLGB) is a prescribed TCM drug in China registered for prevention and treatment of osteoporosis. Fufang in TCM is comprised of a group of herbal compounds contributing in group to the treatment efficacy. The present study aims to identify the bioactive fraction(s) in XLGB extract that account(s) dominantly for its osteogenic effects. Methods The extract of XLGB formula was separated into three fractions using chromatography, i.e., XLGB-A, XLGB-B and XLGB-C. They were administrated to 4-month old ovariectomized (OVX) mice for 6 weeks to determine which bioactive fraction(s) were more effective for preventing OVX-induced bone loss evaluated by microCT, biomechanical testing and biochemical markers. The main peaks of the key fraction were identified using reference compounds isolated from the fraction. In addition, the effects of the composite compounds in XLGB-B on osteoblasts’ proliferation and mineralization were evaluated in UMR 106 cells. Results XLGB-B with a yield of 13.0% from herbal Fufang XLGB was identified as the most potential one among the three fractions for prevention of OVX-induced bone loss confirmed with bone mass, bone microarchitecture, bone strength and bone turnover markers. Nine compounds in HPLC fingerprint were identified in the XLGB-B fraction, including phenylpropanoids from Herba Epimedii, terpenes from Radix Dipsaci and coumarins from Fructus Psoraleae. In addition, the identified compounds effectively promoted proliferation and/or mineralization of osteoblast-like UMR 106 cells in vitro. Conclusion XLGB-B with defined phytochemical structures was screened as the key fraction that demonstrated preventive effects on OVX-induced bone loss in mice. The present study laid down a foundation towards a new generation of herbal Fufang characterized with “less herbal materials for achieving equal treatment efficacy” in development strategy of TCM for prevention of OVX-induced osteoporosis.
Collapse
Affiliation(s)
- Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yixin He
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baosheng Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man-Ching Tsang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengjuan Tu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhihong Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xinhui Xie
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nan Wang
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- * E-mail: (LQ); (XY); (GZ)
| | - Ge Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (LQ); (XY); (GZ)
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (LQ); (XY); (GZ)
| |
Collapse
|
3
|
Galié M, Candotto V, Elia G, Clauser LC. Piezosurgery: A new and safe technique for distraction osteogenesis in Pierre Robin sequence review of the literature and case report. Int J Surg Case Rep 2014; 6C:269-72. [PMID: 25555147 PMCID: PMC4334891 DOI: 10.1016/j.ijscr.2014.11.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Pierre Robin sequence (PRS) is characterized by microgenia and retrognathia. Cleft palate and glossoptosis are frequently associated with airway obstruction and difficulty in swallowing. Distraction osteogenesis with micro-distractors has recently been considered as a surgical option during the neonatal age. CASE PRESENTATION A 6-week-old female with PRS underwent mandibular lengthening in neonatal age. Mandibular osteotomies were performed with the piezoelectric scalpel. DISCUSSION Piezosurgery represents an innovative technique as it offers the maxillofacial surgeon the opportunity to make precise bone cuts without damaging the soft tissue, minimizing the invasiveness of the surgical procedure, and the opportunity of working in a field which is almost totally blood free. CONCLUSION The use of a piezoelectric device to perform this kind of surgery provides clinical and surgical results which would be difficult with traditional instruments, not only for the patient's benefit but also for the surgeon's. Preservation of the original bony structure, especially of the cancellous bone, will benefit the bone healing process due to its high estrogenic potential.
Collapse
Affiliation(s)
- Manlio Galié
- Unit of Cranio Maxillo Facial Surgery, Center for Orbital Pathology & Surgery, Reference Center for Treatment of Rare Diseases, EACMFS International Teaching Centers Network, St. Anna Hospital and University, Via Aldo Moro n. 8 Cona (FE), Ferrara 44124, Italy.
| | - Valentina Candotto
- Unit of Cranio Maxillo Facial Surgery, Center for Orbital Pathology & Surgery, Reference Center for Treatment of Rare Diseases, EACMFS International Teaching Centers Network, St. Anna Hospital and University, Via Aldo Moro n. 8 Cona (FE), Ferrara 44124, Italy
| | - Giovanni Elia
- Unit of Cranio Maxillo Facial Surgery, Center for Orbital Pathology & Surgery, Reference Center for Treatment of Rare Diseases, EACMFS International Teaching Centers Network, St. Anna Hospital and University, Via Aldo Moro n. 8 Cona (FE), Ferrara 44124, Italy
| | - Luigi C Clauser
- Unit of Cranio Maxillo Facial Surgery, Center for Orbital Pathology & Surgery, Reference Center for Treatment of Rare Diseases, EACMFS International Teaching Centers Network, St. Anna Hospital and University, Via Aldo Moro n. 8 Cona (FE), Ferrara 44124, Italy
| |
Collapse
|
4
|
Ross RD, Virdi AS, Liu S, Sena K, Sumner DR. Particle-induced osteolysis is not accompanied by systemic remodeling but is reflected by systemic bone biomarkers. J Orthop Res 2014; 32:967-73. [PMID: 24604767 DOI: 10.1002/jor.22607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/06/2014] [Indexed: 02/04/2023]
Abstract
Particle-induced osteolysis is caused by an imbalance in bone resorption and formation, often leading to loss of implant fixation. Bone remodeling biomarkers may be useful for identification of osteolysis and studying pathogenesis, but interpretation of biomarker data could be confounded if local osteolysis engenders systemic bone remodeling. Our goal was to determine if remote bone remodeling contributes to biomarker levels. Serum concentrations of eight biomarkers and bone remodeling rates at local (femur), contiguous (tibia), and remote (humerus and lumbar vertebra) sites were evaluated in a rat model of particle-induced osteolysis. Serum CTX-1, cathepsin K, PINP, and OPG were elevated and osteocalcin was suppressed in the osteolytic group, but RANKL, TRAP 5b, and sclerostin were not affected at the termination of the study at 12 weeks. The one marker tested longitudinally (CTX-1) was elevated by 3 weeks. We found increased bone resorption and decreased bone formation locally, subtle differences in contiguous sites, but no differences remotely at 12 weeks. Thus, the skeletal response to local particle challenge was not systemic, implying that the observed differences in serum biomarker levels reflect differences in local remodeling.
Collapse
Affiliation(s)
- R D Ross
- Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | | | | | | | | |
Collapse
|
5
|
Sun S, Karsdal M, Bay-Jensen A, Sørensen M, Zheng Q, Dziegiel M, Maksymowych W, Henriksen K. The development and characterization of an ELISA specifically detecting the active form of cathepsin K. Clin Biochem 2013; 46:1601-6. [DOI: 10.1016/j.clinbiochem.2013.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/19/2013] [Accepted: 04/13/2013] [Indexed: 11/28/2022]
|
6
|
Joo MK, Park JJ, Lee BJ, Kim JH, Yeon JE, Kim JS, Byun KS, Bak YT. The effect of a proton pump inhibitor on bone metabolism in ovariectomized rats. Mol Med Rep 2013; 7:1267-72. [PMID: 23426758 DOI: 10.3892/mmr.2013.1327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/13/2013] [Indexed: 11/06/2022] Open
Abstract
Recent studies revealed that long-term intake of proton pump inhibitor (PPI) increases the risk of vertebral or hip fracture; however, the exact mechanism for this is not known. To evaluate the effect of long-term PPI therapy on bone turnover, we analyzed the signaling pathway involved in osteoclast differentiation and bone resorption/formation markers using ovariectomized rats. Six-week-old Sprague-Dawley (S-D) rats were ovariectomized, and two weeks later they were divided into four groups (group A, normal diet + placebo; group B, low calcium diet + placebo; group C, normal diet + PPI; and group D, low calcium diet + PPI). Omeprazole, at a concentration of 30 mg/kg, was administered orally for eight weeks and the rats were sacrificed when they were 16 weeks old. The relative expression levels of the receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) ratio, c-Fos, nuclear factor of activated T cells c1 (NFATc1) and osteocalcin in femoral bone marrow cells were compared, and serum C-terminal cross-linking telopeptide of type I (CTX-1) levels were determined. The relative ratio of RANKL/OPG was increased in group D, and gene expression levels of c-Fos and NFATc1 were upregulated in groups B and D, which are involved in differentiation and activation of osteoclasts. Furthermore, expression levels of osteocalcin, a bone formation marker, were decreased and levels of serum CTX-1, a bone resorption marker, were increased in group D. Taken together, a low calcium diet and PPI administration are thought to collaborate in order to alter osteoclast activity and bone resorption signaling.
Collapse
Affiliation(s)
- Moon Kyung Joo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul 152-703, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang JH, Kim JH, Lim DS, Oh KJ. Effect of combined sex hormone replacement on bone/cartilage turnover in a murine model of osteoarthritis. Clin Orthop Surg 2012; 4:234-41. [PMID: 22949956 PMCID: PMC3425655 DOI: 10.4055/cios.2012.4.3.234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/21/2011] [Indexed: 12/05/2022] Open
Abstract
Background Estrogens act on estrogen receptors distributed in articular cartilages, synovial membrane, and ligaments, which are thought to be related with degenerative changes. Meanwhile, progesterone is known to have a weak anabolic action on bone formation This study evaluates the effects of estrogen and progesterone hormone on bone/cartilage turnover in ovariectomized (OVX) rats. Methods Thirty-five 7-month-old female Sprague-Dawley rats were randomly divided into 5 groups and then ovariectomized bilaterally except the sham control group. The first and the second group acting as controls did not receive hormonal therapy, the third group received estrogen, the fourth group received progesterone, and the fifth group received combination of both hormones 10 weeks after surgery. Evaluations were done using the serum levels of cartilage oligomeric matrix protein (COMP) for cartilage turnover, collagen type I C-telopeptide (CTX-1) and osteocalcin (OC) for bone turnover at 11, 15, 19 weeks after OVX and histology using the Osteoarthritis Research Society International (OARSI) osteoarthritis (OA) cartilage histopathology assessment system. Results Significantly less cartilage degradation (decreased levels of COMP) was found in the combined hormone treated group in comparison with OVX group. Similarly, both hormonal treatment resulted in increased bone formation and decreased bone resorption i.e., a low overall bone turnover status (decrease in the serum OC and CTX-1 levels). Conclusions Combined estrogen and progesterone therapy was found to be convincing in terms of reducing the severity of OA in this experimental model.
Collapse
Affiliation(s)
- Jae-Hyuk Yang
- Department of Orthopaedic Surgery, Seoul Veterans Hospital, Seoul, Korea
| | | | | | | |
Collapse
|
8
|
Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc Natl Acad Sci U S A 2012; 109:9989-94. [PMID: 22652567 DOI: 10.1073/pnas.1119587109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible.
Collapse
|
9
|
Morgan JLL, Gordon GW, Arrua RC, Skulan JL, Anbar AD, Bullen TD. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry. Anal Chem 2011; 83:6956-62. [PMID: 21740001 DOI: 10.1021/ac200361t] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios ((44)Ca/(42)Ca and (44)Ca/(43)Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10 000; Ca/Ti > 10 000 000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ(44/42)Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).
Collapse
Affiliation(s)
- Jennifer L L Morgan
- Arizona State University, Department of Chemistry and Biochemistry, Tempe, Arizona 85287, United States.
| | | | | | | | | | | |
Collapse
|
10
|
McCarthy TL, Kallen CB, Centrella M. β-Catenin independent cross-control between the estradiol and Wnt pathways in osteoblasts. Gene 2011; 479:16-28. [PMID: 21335072 DOI: 10.1016/j.gene.2011.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/08/2011] [Indexed: 12/19/2022]
Abstract
Osteoblasts are controlled by the individual and combined effects of systemic and local growth regulators. Here we show functional and physical interactions between estradiol (17βE) and Wnt activated pathways in osteoblasts. 17βE increased gene promoter activity by the Wnt pathway transcriptional effector T cell factor (TCF) in an estrogen receptor (ER) dependent way. This occurred independently of its activity through traditional estrogen response elements and was not replicated by androgen receptor activation. 17βE also increased the stimulatory effect of LiCl on TCF activity, LiCl increased the stimulatory effect of 17βE through estrogen response elements, and both were further enhanced by a noncanonical Wnt receptor agonist (WAg) that functions independently of β-catenin stabilization. In contrast to LiCl, WAg increased DNA synthesis and reduced relative collagen synthesis and alkaline phosphatase activity in otherwise untreated or 17βE stimulated cells. In addition, WAg suppressed Runx2, osterix, and alkaline phosphatase mRNA levels, and potently induced osteoprotegerin mRNA, whereas LiCl was ineffective alone and inhibitory in combination with 17βE. A definitive intersection between the 17βE and Wnt pathways occurred at the protein level, where ERα physically associated with TCF-4 independently of its β-catenin binding domain. This interaction required ligand-dependent exposure of a TCF binding region that mapped to ERα domain E and was further enhanced by Wnt pathway activation. Our studies reveal highly focused co-regulatory effects between the 17βE and Wnt pathways in osteoblasts that involve activated ERα and TCF-4 and downstream changes in gene expression, osteoblast proliferation, and differentiated cell function.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Yale University School of Medicine, Department of Surgery, New Haven, CT, 06520-8041, USA.
| | | | | |
Collapse
|
11
|
Rissanen JP, Halleen JM. Models and screening assays for drug discovery in osteoporosis. Expert Opin Drug Discov 2010; 5:1163-74. [DOI: 10.1517/17460441.2010.532484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption--implications for osteoclast quality. BMC Musculoskelet Disord 2010; 11:109. [PMID: 20515459 PMCID: PMC2891608 DOI: 10.1186/1471-2474-11-109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 06/01/2010] [Indexed: 01/23/2023] Open
Abstract
Background Normal osteoclasts resorb bone by secretion of acid and proteases. Recent studies of patients with loss of function mutations affecting either of these processes have indicated a divergence in osteoclastic phenotypes. These difference in osteoclast phenotypes may directly or indirectly have secondary effects on bone remodeling, a process which is of importance for the pathogenesis of both osteoporosis and osteoarthritis. We treated human osteoclasts with different inhibitors and characterized their resulting function. Methods Human CD14 + monocytes were differentiated into mature osteoclasts using RANKL and M-CSF. The osteoclasts were cultured on bone in the presence or absence of various inhibitors: Inhibitors of acidification (bafilomycin A1, diphyllin, ethoxyzolamide), inhibitors of proteolysis (E64, GM6001), or a bisphosphonate (ibandronate). Osteoclast numbers and bone resorption were monitored by measurements of TRACP activity, the release of calcium, CTX-I and ICTP, as well as by counting resorption pits. Results All inhibitors of acidification were equally potent with respect to inhibition of both organic and inorganic resorption. In contrast, inhibition of proteolysis by E64 potently reduced organic resorption, but only modestly suppressed inorganic resorption. GM6001 alone did not greatly affect bone resorption. However, when GM6001 and E64 were combined, a complete abrogation of organic bone resorption was observed, without a great effect on inorganic resorption. Ibandronate abrogated both organic and inorganic resorption at all concentrations tested [0.3-100 μM], however, this treatment dramatically reduced TRACP activity. Conclusions We present evidence highlighting important differences with respect to osteoclast function, when comparing the different types of osteoclast inhibitors. Each class of osteoclast inhibitors will lead to different alterations in osteoclast quality, which secondarily may lead to different bone qualities.
Collapse
|
13
|
Henriksen K, Byrjalsen I, Nielsen RH, Madsen AN, Larsen LK, Christiansen C, Beck-Nielsen H, Karsdal MA. A comparison of glycemic control, water retention, and musculoskeletal effects of balaglitazone and pioglitazone in diet-induced obese rats. Eur J Pharmacol 2009; 616:340-5. [DOI: 10.1016/j.ejphar.2009.06.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/19/2009] [Accepted: 06/25/2009] [Indexed: 11/25/2022]
|
14
|
Teplyuk NM, Zhang Y, Lou Y, Hawse JR, Hassan MQ, Teplyuk VI, Pratap J, Galindo M, Stein JL, Stein GS, Lian JB, van Wijnen AJ. The osteogenic transcription factor runx2 controls genes involved in sterol/steroid metabolism, including CYP11A1 in osteoblasts. Mol Endocrinol 2009; 23:849-61. [PMID: 19342447 DOI: 10.1210/me.2008-0270] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Steroid hormones including (1,25)-dihydroxyvitamin D3, estrogens, and glucocorticoids control bone development and homeostasis. We show here that the osteogenic transcription factor Runx2 controls genes involved in sterol/steroid metabolism, including Cyp11a1, Cyp39a1, Cyp51, Lss, and Dhcr7 in murine osteoprogenitor cells. Cyp11a1 (P450scc) encodes an approximately 55-kDa mitochondrial enzyme that catalyzes side-chain cleavage of cholesterol and is rate limiting for steroid hormone biosynthesis. Runx2 is coexpressed with Cyp11a1 in osteoblasts as well as nonosseous cell types (e.g. testis and breast cancer cells), suggesting a broad biological role for Runx2 in sterol/steroid metabolism. Notably, osteoblasts and breast cancer cells express an approximately 32-kDa truncated isoform of Cyp11a1 that is nonmitochondrial and localized in both the cytoplasm and the nucleus. Chromatin immunoprecipitation analyses and gel shift assays show that Runx2 binds to the Cyp11a1 gene promoter in osteoblasts, indicating that Cyp11a1 is a direct target of Runx2. Specific Cyp11a1 knockdown with short hairpin RNA increases cell proliferation, indicating that Cyp11a1 normally suppresses osteoblast proliferation. We conclude that Runx2 regulates enzymes involved in sterol/steroid-related metabolic pathways and that activation of Cyp11a1 by Runx2 may contribute to attenuation of osteoblast growth.
Collapse
Affiliation(s)
- Nadiya M Teplyuk
- Department of Cell Biology, Worcester, Massachusetts 01655-0106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Expression of an estrogen receptor agonist in differentiating osteoblast cultures. Proc Natl Acad Sci U S A 2008; 105:7022-7. [PMID: 18474857 DOI: 10.1073/pnas.0800085105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoblasts respond in direct and indirect ways to estrogens, and age-dependent changes in hormone levels and bone health can be limited by focused hormone replacement therapy. In this study, we report the release and isolation of an estrogen receptor agonist from osteoblast cultures. This entity reprises many aspects of estradiol activity in isolated osteoblasts, but differs from authentic estradiol by several biochemical and physical criteria. At levels that occur in conditioned medium from differentiating osteoblast cultures, the agonist directly drives gene expression through estrogen-sensitive response elements, activates the obligate osteoblast transcription factor Runx2, and potently enhances Smad-dependent gene expression in response to TGF-beta, but exhibits relatively lesser suppressive effects on gene expression through C/EBP and AP-1-binding protein transcription factors. Estrogen receptor agonist activity is resistant to heating at 100 degrees C and separable from the bulk of the remaining alcohol- and hexane-soluble molecules by C18 chromatography. MS and molecular fragmentation analyses predict a M(r) of 415.2 to 437.2. Therefore, in addition to earlier studies showing that osteoblasts readily respond to and metabolize various sex steroid-like substrates, we find that they also generate a potent estrogen receptor agonist during differentiation in vitro. Changes in the availability of a molecule like this within bone may relate to differences in skeletal integrity with aging or metabolic disease.
Collapse
|
16
|
Rissanen JP, Suominen MI, Peng Z, Morko J, Rasi S, Risteli J, Halleen JM. Short-term changes in serum PINP predict long-term changes in trabecular bone in the rat ovariectomy model. Calcif Tissue Int 2008; 82:155-61. [PMID: 18219436 DOI: 10.1007/s00223-007-9101-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 12/23/2007] [Indexed: 10/22/2022]
Abstract
Serum procollagen I N-terminal propeptide (PINP) is a sensitive bone formation marker in humans. We have developed a nonradioactive immunoassay for rat PINP and studied PINP as a bone formation marker in the rat ovariectomy (OVX) model. Two OVX studies were performed with 3-month-old rats, both including measurement of PINP, C-terminal cross-linked telopeptide of type I collagen (CTX), and N-terminal mid-fragment of osteocalcin. A pilot 14-day study contained a sham-operated control group and an OVX group, and an extensive 8-week study contained a sham-operated control group and OVX groups receiving vehicle and 17 beta-estradiol (E2, 10 microg/kg/day s.c.). The bone markers were measured before the operation and at days 2, 4, 7, 10, and 14 in the pilot study and before the operations and at 2 and 8 weeks in the extensive study. Trabecular bone parameters were determined by peripheral quantitative computed tomography and histomorphometry from tibial metaphysis in the extensive study. The rat PINP immunoassay had the following characteristics: intra-assay coefficient of variation (CV) 2.8%, interassay CV 7.5%, dilution linearity 95%, and recovery 107%. PINP increased significantly during the first 2 weeks after OVX and returned to sham level at 8 weeks. E2 prevented the increase caused by OVX. Changes in PINP at 2 weeks correlated strongly with changes in CTX and osteocalcin at 2 weeks and with trabecular bone parameters at 8 weeks. As a conclusion, short-term changes in PINP predict long-term changes in trabecular bone parameters, suggesting that PINP is a reliable marker of bone formation in the rat OVX model.
Collapse
Affiliation(s)
- Jukka P Rissanen
- Pharmatest Services, Itäinen Pitkäkatu 4 C, 20520 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|