1
|
Martínez Cuesta L, Pérez SE. Perforin and granzymes in neurological infections: From humans to cattle. Comp Immunol Microbiol Infect Dis 2021; 75:101610. [PMID: 33453589 DOI: 10.1016/j.cimid.2021.101610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
Perforin and granzymes are essential components of the cytotoxic granules present in cytotoxic T lymphocytes and natural killer cells. These proteins play a crucial role in a variety of conditions, including viral infections, tumor immune surveillance, and tissue rejection. Besides their beneficial effect in most of these situations, perforin and granzymes have also been associated with tissue damage and immune diseases. Moreover, it has been reported that perforin and granzymes released during viral infections could contribute to the pathogenesis of diseases. In this review, we summarize the information available on human perforin and granzymes and their relationship with neurological infections and immune disorders. Furthermore, we compare this information with that available for bovine and present data on perforin and granzymes expression in cattle infected with bovine alphaherpesvirus types1 and -5. To our knowledge, this is the first review analyzing the impact of perforin and granzymes on neurological infections caused by bovine herpesviruses.
Collapse
Affiliation(s)
- Lucía Martínez Cuesta
- Virology, SAMP Department, Centro de Investigación Veterinaria de Tandil (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pinto 399, Tandil, PC7000, Buenos Aires, Argentina
| | - Sandra Elizabeth Pérez
- Virology, SAMP Department, Centro de Investigación Veterinaria de Tandil (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pinto 399, Tandil, PC7000, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Guo J, Li Q, Jones C. The bovine herpesvirus 1 regulatory proteins, bICP4 and bICP22, are expressed during the escape from latency. J Neurovirol 2018; 25:42-49. [PMID: 30402823 DOI: 10.1007/s13365-018-0684-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/14/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Following acute infection of mucosal surfaces by bovine herpesvirus 1 (BoHV-1), sensory neurons are a primary site for lifelong latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Two viral regulatory proteins (VP16 and bICP0) are expressed within 1 h after calves latently infected with BoHV-1 are treated with dexamethasone. Since the immediate early transcription unit 1 (IEtu1) promoter regulates both BoHV-1 infected cell protein 0 (bICP0) and bICP4 expressions, we hypothesized that the bICP4 protein is also expressed during early stages of reactivation from latency. In this study, we tested whether bICP4 and bICP22, the only other BoHV-1 protein known to be encoded by an immediate early gene, were expressed during reactivation from latency by generating peptide-specific antiserum to each protein. bICP4 and bICP22 protein expression were detected in trigeminal ganglionic (TG) neurons during early phases of dexamethasone-induced reactivation from latency, operationally defined as the escape from latency. Conversely, bICP4 and bICP22 were not readily detected in TG neurons of latently infected calves. In summary, it seems clear that all proteins encoded by known BoHV-1 IE genes (bICP4, bICP22, and bICP0) were expressed during early stages of dexamethasone-induced reactivation from latency.
Collapse
Affiliation(s)
- Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116 Huayuan Rd., Zhengzhou, People's Republic of China.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116 Huayuan Rd., Zhengzhou, People's Republic of China.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
3
|
Workman A, Zhu L, Keel BN, Smith TPL, Jones C. The Wnt Signaling Pathway Is Differentially Expressed during the Bovine Herpesvirus 1 Latency-Reactivation Cycle: Evidence That Two Protein Kinases Associated with Neuronal Survival, Akt3 and BMPR2, Are Expressed at Higher Levels during Latency. J Virol 2018; 92:e01937-17. [PMID: 29321317 PMCID: PMC5972910 DOI: 10.1128/jvi.01937-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory neurons in trigeminal ganglia (TG) of calves latently infected with bovine herpesvirus 1 (BoHV-1) abundantly express latency-related (LR) gene products, including a protein (ORF2) and two micro-RNAs. Recent studies in mouse neuroblastoma cells (Neuro-2A) demonstrated ORF2 interacts with β-catenin and a β-catenin coactivator, high-mobility group AT-hook 1 (HMGA1) protein, which correlates with increased β-catenin-dependent transcription and cell survival. β-Catenin and HMGA1 are readily detected in a subset of latently infected TG neurons but not TG neurons from uninfected calves or reactivation from latency. Consequently, we hypothesized that the Wnt/β-catenin signaling pathway is differentially expressed during the latency and reactivation cycle and an active Wnt pathway promotes latency. RNA-sequencing studies revealed that 102 genes associated with the Wnt/β-catenin signaling pathway were differentially expressed in TG during the latency-reactivation cycle in calves. Wnt agonists were generally expressed at higher levels during latency, but these levels decreased during dexamethasone-induced reactivation. The Wnt agonist bone morphogenetic protein receptor 2 (BMPR2) was intriguing because it encodes a serine/threonine receptor kinase that promotes neuronal differentiation and inhibits cell death. Another differentially expressed gene encodes a protein kinase (Akt3), which is significant because Akt activity enhances cell survival and is linked to herpes simplex virus 1 latency and neuronal survival. Additional studies demonstrated ORF2 increased Akt3 steady-state protein levels and interacted with Akt3 in transfected Neuro-2A cells, which correlated with Akt3 activation. Conversely, expression of Wnt antagonists increased during reactivation from latency. Collectively, these studies suggest Wnt signaling cooperates with LR gene products, in particular ORF2, to promote latency.IMPORTANCE Lifelong BoHV-1 latency primarily occurs in sensory neurons. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency in calves. RNA sequencing studies revealed 102 genes associated with the Wnt/β-catenin signaling pathway are differentially regulated during the latency-reactivation cycle. Two protein kinases associated with the Wnt pathway, Akt3 and BMPR2, were expressed at higher levels during latency but were repressed during reactivation. Furthermore, five genes encoding soluble Wnt antagonists and β-catenin-dependent transcription inhibitors were induced during reactivation from latency. These findings are important because Wnt, BMPR2, and Akt3 promote neurogenesis and cell survival, processes crucial for lifelong viral latency. In transfected neuroblastoma cells, a viral protein expressed during latency (ORF2) interacts with and enhances Akt3 protein kinase activity. These findings provide insight into how cellular factors associated with the Wnt signaling pathway cooperate with LR gene products to regulate the BoHV-1 latency-reactivation cycle.
Collapse
Affiliation(s)
- Aspen Workman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Liqian Zhu
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Brittney N Keel
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Timothy P L Smith
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Clinton Jones
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Combinatorial Effects of the Glucocorticoid Receptor and Krüppel-Like Transcription Factor 15 on Bovine Herpesvirus 1 Transcription and Productive Infection. J Virol 2017; 91:JVI.00904-17. [PMID: 28794031 DOI: 10.1128/jvi.00904-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Latently infected calves consistently reactivate from latency following a single intravenous injection of the synthetic corticosteroid dexamethasone. The immediate early transcription unit 1 (IEtu1) promoter, which drives bovine ICP0 (bICP0) and bICP4 expression, is stimulated by dexamethasone because it contains two glucocorticoid receptor (GR) response elements (GREs). Several Krüppel-like transcription factors (KLF), including KLF15, are induced during reactivation from latency, and they stimulate certain viral promoters and productive infection. In this study, we demonstrate that the GR and KLF15 were frequently expressed in the same trigeminal ganglion (TG) neuron during reactivation and cooperatively stimulated productive infection and IEtu1 GREs in mouse neuroblastoma cells (Neuro-2A). We further hypothesized that additional regions in the BoHV-1 genome are transactivated by the GR or stress-induced transcription factors. To test this hypothesis, BoHV-1 DNA fragments (less than 400 bp) containing potential GR and KLF binding sites were identified and examined for transcriptional activation by stress-induced transcription factors. Intergenic regions within the unique long 52 gene (UL52; a component of the DNA primase/helicase complex), bICP4, IEtu2, and the unique short region were stimulated by KLF15 and the GR. Chromatin immunoprecipitation studies revealed that the GR and KLF15 interacted with sequences within IEtu1 GREs and the UL52 fragment. Coimmunoprecipitation studies demonstrated that KLF15 and the GR were associated with each other in transfected cells. Since the GR stimulates KLF15 expression, we suggest that these two transcription factors form a feed-forward loop that stimulates viral gene expression and productive infection following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen that causes respiratory disease and suppresses immune responses in cattle; consequently, life-threatening bacterial pneumonia can occur. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons. Reactivation from latency is initiated by the synthetic corticosteroid dexamethasone. Dexamethasone stimulates lytic cycle viral gene expression in sensory neurons of calves latently infected with BoHV-1, culminating in virus shedding and transmission. Two stress-induced cellular transcription factors, Krüppel-like transcription factor 15 (KLF15) and the glucocorticoid receptor (GR), cooperate to stimulate productive infection and viral transcription. Additional studies demonstrated that KLF15 and the GR form a stable complex and that these stress-induced transcription factors bind to viral DNA sequences, which correlates with transcriptional activation. The ability of the GR and KLF15 to synergistically stimulate viral gene expression and productive infection may be critical for the ability of BoHV-1 to reactivate from latency following stressful stimuli.
Collapse
|
5
|
Oliveira BRSM, Vieira FV, de S Vieira D, da Silva SEL, Gameiro R, Flores EF, Cardoso TC. Expression of miR-155 associated with Toll-like receptors 3, 7, and 9 transcription in the olfactory bulbs of cattle naturally infected with BHV5. J Neurovirol 2017; 23:772-778. [PMID: 28831740 PMCID: PMC7095048 DOI: 10.1007/s13365-017-0564-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/14/2017] [Accepted: 07/30/2017] [Indexed: 12/16/2022]
Abstract
Bovine herpesvirus 5 (BHV5) infection of young cattle is frequently associated with fatal neurological disease and, as such, represents an attractive model for studying the pathogenesis of viral-induced meningoencephalitis. Following replication in the nasal mucosa, BHV5 invades the central nervous system (CNS) mainly through the olfactory pathway. The innate immune response triggered by the host face to virus replication through the olfactory route is poorly understood. Recently, an upregulation of conserved pathogen-associated molecular pattern, as Toll-like receptors (TLRs), has been demonstrated in the CNS of BHV5 experimentally infected cows. A new perspective to understand host-pathogen interactions has emerged elucidating microRNAs (miRNAs) network that interact with innate immune response during neurotropic viral infections. In this study, we demonstrated a link between the expression of TLRs 3, 7, and 9 and miR-155 transcription in the olfactory bulbs (OB) of 16 cows suffering from acute BHV5-induced neurological disease. The OBs were analyzed for viral antigens and genome, miR-155 and TLR 3, 7, and 9 expression considering three major regions: olfactory receptor neurons (ORNs), glomerular layer (GL), and mitral cell layer (ML). BHV5 antigens and viral genomes, corresponding to glycol-C gene, were detected in all OBs regions by fluorescent antibody assay (FA) and PCR, respectively. TLR 3, 7, and 9 transcripts were upregulated in ORNs and ML, yet only ORN layers revealed a positive correlation between TLR3 and miR-155 transcription. In ML, miR-155 correlated positively with all TLRs studied. Herein, our results evidence miR-155 transcription in BHV5 infected OB tissue associated to TLRs expression specifically ORNs which may be a new window for further studies.
Collapse
Affiliation(s)
- Bruna R S M Oliveira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, SP, 16050-680, Brazil
| | - Flavia V Vieira
- College of Veterinary Medicine, Universidade Estadual do Norte do Paraná (UENP), Rodovia BR-369 km 54, Vila Maria, Bandeirantes, PR, 86360000, Brazil
| | - Dielson de S Vieira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, SP, 16050-680, Brazil
| | - Sergio E L da Silva
- College of Veterinary Medicine, Universidade Federal Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Roberto Gameiro
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, SP, 16050-680, Brazil
| | - Eduardo F Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Tereza C Cardoso
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, SP, 16050-680, Brazil.
| |
Collapse
|
6
|
Potential Role for a β-Catenin Coactivator (High-Mobility Group AT-Hook 1 Protein) during the Latency-Reactivation Cycle of Bovine Herpesvirus 1. J Virol 2017; 91:JVI.02132-16. [PMID: 28003484 DOI: 10.1128/jvi.02132-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022] Open
Abstract
The latency-related (LR) RNA encoded by bovine herpesvirus 1 (BoHV-1) is abundantly expressed in latently infected sensory neurons. Although the LR gene encodes several products, ORF2 appears to mediate important steps during the latency-reactivation cycle because a mutant virus containing stop codons at the amino terminus of ORF2 does not reactivate from latency in calves. We recently found that the Wnt/β-catenin signaling pathway is regulated during the BoHV-1 latency-reactivation cycle (Y. Liu, M. Hancock, A. Workman, A. Doster, and C. Jones, J Virol 90:3148-3159, 2016). In the present study, a β-catenin coactivator, high-mobility group AT-hook 1 protein (HMGA1), was detected in significantly more neurons in the trigeminal ganglia of latently infected calves than in those of uninfected calves. Consequently, we hypothesized that HMGA1 cooperates with ORF2 and β-catenin to maintain latency. In support of this hypothesis, coimmunoprecipitation studies demonstrated that ORF2 stably interacts with a complex containing β-catenin and/or HMGA1 in transfected mouse neuroblastoma (Neuro-2A) cells. Confocal microscopy provided evidence that ORF2 was relocalized by HMGA1 and β-catenin in Neuro-2A cells. ORF2 consistently enhanced the ability of HMGA1 to stimulate β-catenin-dependent transcription, suggesting that interactions between ORF2 and a complex containing β-catenin and HMGA1 have functional significance. An ORF2 stop codon mutant, an ORF2 nuclear localization mutant, or a mutant lacking the 5 protein kinase A or C phosphorylation sites interfered with its ability to stimulate β-catenin-dependent transcription. Since the canonical Wnt/β-catenin signaling pathway promotes neurogenesis (synapse formation and remodeling) and inhibits neurodegeneration, interactions between ORF2, HMGA1, and β-catenin may be important for certain aspects of the latency-reactivation cycle.IMPORTANCE The lifelong latency of bovine herpesvirus 1 (BoHV-1) requires that significant numbers of infected sensory neurons survive infection and maintain normal functions. Consequently, we hypothesize that viral products expressed during latency cooperate with neuronal factors to maintain latency. Our studies revealed that a β-catenin coactivator, high-mobility group AT-hook 1 protein (HMGA1), was readily detected in a subset of trigeminal ganglion neurons in latently infected calves but not in uninfected calves. A viral protein (ORF2) expressed in latently infected neurons interacted with β-catenin and HMGA1 in transfected cells, which resulted in the nuclear localization of β-catenin. This interaction correlated with the ability of ORF2 to stimulate the coactivator functions of HMGA1. These findings are significant because the canonical Wnt/β-catenin signaling pathway promotes neurogenesis and inhibits neurodegeneration.
Collapse
|
7
|
Cardoso TC, Ferreira HL, Okamura LH, Giroto TP, Oliveira BRSM, Fabri CUF, Gameiro R, Flores EF. Cellular response markers and cytokine gene expression in the central nervous system of cattle naturally infected with bovine herpesvirus 5. Vet J 2016; 218:71-77. [PMID: 27938713 DOI: 10.1016/j.tvjl.2016.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
The present study reports an investigation on the phenotype of inflammatory and immune cells, cytokine and viral gene expression in the brains of cattle naturally infected with bovine herpesvirus 5 (BHV5). Brain sections of 38 affected animals were analysed for the nature and extent of perivascular cuffs in the Virchow-Robin space and parenchyma. Histopathological changes were severe in the olfactory bulbs (Obs), hippocampus, piriform, frontal, temporal and parietal cortices/lobes and were characterized by inflammatory infiltrates in Virchow-Robin spaces. The histopathological changes correlated positively with the distribution of BHV5 antigens (r = 0.947; P < 0.005). Cells of CD3+ phenotype were predominant in areas with severe perivascular cuffs. Viral antigens and genomic viral DNA were detected in the Obs and piriform lobe, simultaneously (r = 0.987; P < 0.005). Similarly, pro-inflammatory cytokine genes INFG, IL2, TNF and LTBR were expressed in the same brain areas (P < 0.005). These results provide important information on the inflammatory and immunological events accompanying BHV5 neurological infections. Our findings provide the first evidence for increased immune activation followed by inflammatory cytokine expression, positively correlated with viral replication in the cranial areas of the brain. Taken together, these results suggest that the host immune response and inflammation play a crucial role in the pathogenesis of acute encephalitis by BHV5 in cattle.
Collapse
Affiliation(s)
- T C Cardoso
- Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Univ - Universidade Estadual Paulista, Araçatuba, São Paulo 16050-680, Brazil.
| | - H L Ferreira
- Department of Veterinary Medicine, FZEA-USP-University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo 13635-900, Brazil
| | - L H Okamura
- Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Univ - Universidade Estadual Paulista, Araçatuba, São Paulo 16050-680, Brazil
| | - T P Giroto
- Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Univ - Universidade Estadual Paulista, Araçatuba, São Paulo 16050-680, Brazil
| | - B R S M Oliveira
- Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Univ - Universidade Estadual Paulista, Araçatuba, São Paulo 16050-680, Brazil
| | - C U F Fabri
- Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Univ - Universidade Estadual Paulista, Araçatuba, São Paulo 16050-680, Brazil
| | - R Gameiro
- Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Univ - Universidade Estadual Paulista, Araçatuba, São Paulo 16050-680, Brazil
| | - E F Flores
- Virology Section, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97115-900, Brazil
| |
Collapse
|
8
|
The latency related gene of bovine herpesvirus types 1 and 5 and its modulation of cellular processes. Arch Virol 2016; 161:3299-3308. [DOI: 10.1007/s00705-016-3067-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
|
9
|
β-Catenin, a Transcription Factor Activated by Canonical Wnt Signaling, Is Expressed in Sensory Neurons of Calves Latently Infected with Bovine Herpesvirus 1. J Virol 2016; 90:3148-59. [PMID: 26739046 DOI: 10.1128/jvi.02971-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Like many Alphaherpesvirinae subfamily members, bovine herpesvirus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons, the latency-related (LR)-RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch-mediated transcription, and stimulates neurite formation in cells expressing Notch. An LR mutant virus containing stop codons at the amino terminus of ORF2 does not reactivate from latency or replicate efficiently in certain tissues, indicating that LR gene products are important. In this study, β-catenin, a transcription factor activated by the canonical Wnt signaling pathway, was frequently detected in ORF2-positive trigeminal ganglionic neurons of latently infected, but not mock-infected, calves. Conversely, the lytic cycle regulatory protein (BoHV-1 infected cell protein 0, or bICP0) was not frequently detected in β-catenin-positive neurons in latently infected calves. During dexamethasone-induced reactivation from latency, mRNA expression levels of two Wnt antagonists, Dickkopf-1 (DKK-1) and secreted Frizzled-related protein 2 (SFRP2), were induced in bovine trigeminal ganglia (TG), which correlated with reduced β-catenin protein expression in TG neurons 6 h after dexamethasone treatment. ORF2 and a coactivator of β-catenin, mastermind-like protein 1 (MAML1), stabilized β-catenin protein levels and stimulated β-catenin-dependent transcription in mouse neuroblastoma cells more effectively than MAML1 or ORF2 alone. Neuroblastoma cells expressing ORF2, MAML1, and β-catenin were highly resistant to cell death following serum withdrawal, whereas most cells transfected with only one of these genes died. The Wnt signaling pathway interferes with neurodegeneration but promotes neuronal differentiation, suggesting that stabilization of β-catenin expression by ORF2 promotes neuronal survival and differentiation. IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an important pathogen of cattle, and like many Alphaherpesvirinae subfamily members establishes latency in sensory neurons. Lifelong latency and the ability to reactivate from latency are crucial for virus transmission. Maintaining the survival and normal functions of terminally differentiated neurons is also crucial for lifelong latency. Our studies revealed that BoHV-1 gene products expressed during latency stabilize expression of the transcription factor β-catenin and perhaps its cofactor, mastermind-like protein 1 (MAML1). In contrast to expression during latency, β-catenin expression in sensory neurons is not detectable following treatment of latently infected calves with the synthetic corticosteroid dexamethasone to initiate reactivation from latency. A viral protein (ORF2) expressed in a subset of latently infected neurons stabilized β-catenin and MAML1 in transfected cells. ORF2, β-catenin, and MAML1 also enhanced cell survival when growth factors were withdrawn, suggesting that these genes enhance survival of latently infected neurons.
Collapse
|
10
|
Bovine herpesvirus 1 regulatory proteins are detected in trigeminal ganglionic neurons during the early stages of stress-induced escape from latency. J Neurovirol 2015; 21:585-91. [PMID: 25860382 DOI: 10.1007/s13365-015-0339-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
Bovine herpesvirus 1 (BHV-1) establishes latency in sensory neurons. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency. Within 90 min after latently infected calves are treated with dexamethasone, two BHV-1 regulatory proteins, BHV-1-infected cell protein 0 (bICP0) and viral protein 16 (VP16), are expressed in the same neuron. In this study, we demonstrate that VP16 and bICP0 can be detected at 22 and 33 min after dexamethasone (DEX) treatment of latently infected calves. However, we were unable to discern whether VP16 or bICP0 was expressed at early times after reactivation. VP16+ neurons consistently express the glucocorticoid receptor suggesting corticosteroid-mediated activation of its receptor rapidly stimulates reactivation from latency.
Collapse
|
11
|
Wang J, Alexander J, Wiebe M, Jones C. Bovine herpesvirus 1 productive infection stimulates inflammasome formation and caspase 1 activity. Virus Res 2014; 185:72-6. [PMID: 24657787 PMCID: PMC6240421 DOI: 10.1016/j.virusres.2014.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1), a significant viral pathogen of cattle, causes inflammation in affected tissue during acute infection. Consequently, we tested whether productively infected bovine cells stimulate inflammasome formation. Expression of two components required for inflammasome formation, the DNA sensor IFI16 (gamma-interferon-inducible protein 16) and NLRP3 (NOD-like receptor family, pyrin domain containing 3), were induced in bovine kidney cells by eight hours after infection. IFI16 was detected in punctate granules localized to the cytoplasm and nucleus. During productive infection, more than ten times more cells were caspase 1 positive, which is activated following inflammasome formation. Two caspase 1 inhibitors had no effect on productive infection. Conversely, another caspase 1 inhibitor, glyburide, significantly inhibited virus infection suggesting it had off-target effects on related enzymes or interfered with infection via non-enzymatic mechanisms. Collectively, these studies demonstrated that BoHV-1 infection stimulated inflammasome formation, which we predict is important for clinical symptoms in cattle.
Collapse
Affiliation(s)
- Jianlin Wang
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, PR China
| | - Jeff Alexander
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln Morisson Life Science Center, RM234, Lincoln, NE 68583-0900, United States
| | - Matthew Wiebe
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln Morisson Life Science Center, RM234, Lincoln, NE 68583-0900, United States
| | - Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln Morisson Life Science Center, RM234, Lincoln, NE 68583-0900, United States.
| |
Collapse
|
12
|
Jahns H, Fast C. A histopathological study of bovine ganglia. J Comp Pathol 2014; 150:234-44. [PMID: 24456750 PMCID: PMC7094613 DOI: 10.1016/j.jcpa.2013.11.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 09/14/2013] [Accepted: 11/23/2013] [Indexed: 11/30/2022]
Abstract
One hundred and sixty-eight ganglia from 54 cattle aged 10 days to 10 years were examined microscopically. Samples from six autonomic ganglia and one sensory ganglion were represented. Thirteen animals were clinically normal and 41 were submitted for post-mortem examination. Neuronal vacuolation, spheroid formation, lipofuscin accumulation and central chromatolysis were observed sporadically and were of varying magnitude. Neuronal vacuolation and spheroid formation were not age-related changes, while lipofuscin accumulation was more common in older animals and central chromatolysis was more common in younger cattle. Non-suppurative inflammation and neuronophagia were also common findings (23 out of 54 animals, 42.6%) in autonomic ganglia that did not contain herpesvirus DNA as determined by polymerase chain reaction. Renaut bodies, features of peripheral nerves, were most commonly noted in the vagus. None of the histopathological findings were related to any particular disease in which loss of autonomic nervous system function might be expected. Furthermore, all changes were as common in clinically normal animals as in animals with disease.
Collapse
Affiliation(s)
- H Jahns
- Pathobiology Section, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | - C Fast
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| |
Collapse
|
13
|
Bovine herpesvirus 1 regulatory proteins bICP0 and VP16 are readily detected in trigeminal ganglionic neurons expressing the glucocorticoid receptor during the early stages of reactivation from latency. J Virol 2013; 87:11214-22. [PMID: 23926348 DOI: 10.1128/jvi.01737-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1) establishes a lifelong latent infection in sensory neurons following acute infection. Increased corticosteroid levels, due to stress, increases the incidence of reactivation from latency. Within minutes, corticosteroids activate the glucocorticoid receptor and transcription of promoters containing a glucocorticoid receptor element. A single intravenous injection of the synthetic corticosteroid dexamethasone consistently induces reactivation from latency in calves. Lytic cycle viral gene expression is detected within 6 h after dexamethasone treatment of calves latently infected with BHV-1. Cellular transcription factors are induced by dexamethasone in trigeminal ganglionic neurons within 1.5 h after dexamethasone treatment, suggesting they promote viral gene expression during the early phases of reactivation from latency, which we operationally defined as the escape from latency. In this study, immunohistochemistry was utilized to examine viral protein expression during the escape from latency. Within 1.5 h after dexamethasone treatment, bICP0 and a late protein (VP16) were consistently detected in a subset of trigeminal ganglionic neurons. Most neurons expressing bICP0 also expressed VP16. Additional studies revealed that neurons expressing the glucocorticoid receptor also expressed bICP0 or VP16 at 1.5 h after dexamethasone treatment. Two other late proteins, glycoprotein C and D, were not detected until 6 h after dexamethasone treatment and were detected in only a few neurons. These studies provide evidence that VP16 and the promiscuous viral trans-activator (bICP0) are expressed during the escape from latency, suggesting they promote the production of infectious virus in a small subset of latently infected neurons.
Collapse
|
14
|
Cellular transcription factors induced in trigeminal ganglia during dexamethasone-induced reactivation from latency stimulate bovine herpesvirus 1 productive infection and certain viral promoters. J Virol 2011; 86:2459-73. [PMID: 22190728 DOI: 10.1128/jvi.06143-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1), an alphaherpesvirinae subfamily member, establishes latency in sensory neurons. Elevated corticosteroid levels, due to stress, reproducibly triggers reactivation from latency in the field. A single intravenous injection of the synthetic corticosteroid dexamethasone (DEX) to latently infected calves consistently induces reactivation from latency. Lytic cycle viral gene expression is detected in sensory neurons within 6 h after DEX treatment of latently infected calves. These observations suggested that DEX stimulated expression of cellular genes leads to lytic cycle viral gene expression and productive infection. In this study, a commercially available assay-Bovine Gene Chip-was used to compare cellular gene expression in the trigeminal ganglia (TG) of calves latently infected with BHV-1 versus DEX-treated animals. Relative to TG prepared from latently infected calves, 11 cellular genes were induced more than 10-fold 3 h after DEX treatment. Pentraxin three, a regulator of innate immunity and neurodegeneration, was stimulated 35- to 63-fold after 3 or 6 h of DEX treatment. Two transcription factors, promyelocytic leukemia zinc finger (PLZF) and Slug were induced more than 15-fold 3 h after DEX treatment. PLZF or Slug stimulated productive infection 20- or 5-fold, respectively, and Slug stimulated the late glycoprotein C promoter more than 10-fold. Additional DEX-induced transcription factors also stimulated productive infection and certain viral promoters. These studies suggest that DEX-inducible cellular transcription factors and/or signaling pathways stimulate lytic cycle viral gene expression, which subsequently leads to successful reactivation from latency in a small subset of latently infected neurons.
Collapse
|
15
|
Two microRNAs encoded within the bovine herpesvirus 1 latency-related gene promote cell survival by interacting with RIG-I and stimulating NF-κB-dependent transcription and beta interferon signaling pathways. J Virol 2011; 86:1670-82. [PMID: 22130548 DOI: 10.1128/jvi.06550-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sensory neurons latently infected with bovine herpesvirus 1 (BHV-1) abundantly express latency-related (LR) RNA (LR-RNA). Genetic evidence indicates that LR protein expression plays a role in the latency-reactivation cycle, because an LR mutant virus that contains three stop codons downstream of the first open reading frame (ORF2) does not reactivate from latency. The LR mutant virus induces higher levels of apoptotic neurons in trigeminal ganglia, and ORF2 interferes with apoptosis. Although ORF2 is important for the latency-reactivation cycle, other factors encoded by the LR gene are believed to play a supportive role. For example, two microRNAs (miRNAs) encoded within the LR gene are expressed in trigeminal ganglia of latently infected calves. These miRNAs interfere with bICP0 protein expression and productive infection in transient-transfection assays. In this report, we provide evidence that the two LR miRNAs cooperate with poly(I·C), interferon (IFN) regulatory factor 3 (IRF3), or IRF7 to stimulate beta interferon (IFN-β) promoter activity. Both miRNAs also stimulated IFN-β promoter activity and nuclear factor-kappa B (NF-κB)-dependent transcription when cotransfected with a plasmid expressing retinoic acid-inducible gene I (RIG-I). In the presence of RIG-I, the LR miRNAs enhanced survival of mouse neuroblastoma cells, which correlated with activation of the antiapoptosis cellular transcription factor, NF-κB. Immunoprecipitation assays demonstrated that both miRNAs stably interact with RIG-I, suggesting that this interaction directly stimulates the RIG-I signaling pathway. In summary, the results of these studies suggest that interactions between LR miRNAs and RIG-I promote the establishment and maintenance of latency by enhancing survival of infected neurons.
Collapse
|
16
|
Jaber T, Workman A, Jones C. Small noncoding RNAs encoded within the bovine herpesvirus 1 latency-related gene can reduce steady-state levels of infected cell protein 0 (bICP0). J Virol 2010; 84:6297-307. [PMID: 20410286 PMCID: PMC2903259 DOI: 10.1128/jvi.02639-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/30/2010] [Indexed: 01/02/2023] Open
Abstract
Following acute infection in mucosal epithelium, bovine herpes virus 1 (BHV-1) establishes lifelong latency in sensory neurons within trigeminal ganglia. The latency-related RNA (LR-RNA) is abundantly expressed in sensory neurons of latently infected calves. Expression of LR proteins is necessary for the latency reactivation cycle because a mutant virus that does not express LR proteins is unable to reactivate from latency after dexamethasone treatment. LR-RNA sequences also inhibit bICP0 expression, productive infection, and cell growth. However, it is unclear how LR-RNA mediates these functions. In this study, we identified a 463-bp region within the LR gene (the XbaI-PstI [XP] fragment) that inhibited bICP0 protein and RNA expression in transiently transfected mouse neuroblastoma cells. Small noncoding RNAs (sncRNAs) encoded within the XP fragment (20 to 90 nucleotides in length) were detected in transiently transfected mouse neuroblastoma cells. Two families of sncRNAs were cloned from this region, and each family was predicted to contain a mature microRNA (miRNA). Both miRNAs were predicted to base pair with bICP0 mRNA sequences, suggesting that they reduce bICP0 levels. To test this prediction, sequences encompassing the respective sncRNAs and mature miRNAs were synthesized and cloned into a small interfering RNA expression vector. Both sncRNA families and their respective miRNAs inhibited bICP0 protein expression in mouse neuroblastoma cells and productive infection in bovine cells. In trigeminal ganglia of latently infected calves, an sncRNA that migrated between nucleotides 20 and 25 hybridized to the XP fragment. During dexamethasone-induced reactivation from latency, XP-specific sncRNA levels were reduced, suggesting that these sncRNAs support the establishment and maintenance of lifelong latency in cattle.
Collapse
Affiliation(s)
- Tareq Jaber
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503
| | - Aspen Workman
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503
| | - Clinton Jones
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503
| |
Collapse
|
17
|
Henderson G, Jaber T, Carpenter D, Wechsler SL, Jones C. Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript. J Neurovirol 2010; 15:439-48. [PMID: 20175695 DOI: 10.3109/13550280903296353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.
Collapse
Affiliation(s)
- Gail Henderson
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, USA
| | | | | | | | | |
Collapse
|
18
|
Jones C. Regulation of Innate Immune Responses by Bovine Herpesvirus 1 and Infected Cell Protein 0 (bICP0). Viruses 2009; 1:255-75. [PMID: 21994549 PMCID: PMC3185490 DOI: 10.3390/v1020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/24/2009] [Accepted: 09/02/2009] [Indexed: 01/12/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) infected cell protein 0 (bICP0) is an important transcriptional regulatory protein that stimulates productive infection. In transient transfection assays, bICP0 also inhibits interferon dependent transcription. bICP0 can induce degradation of interferon stimulatory factor 3 (IRF3), a cellular transcription factor that is crucial for activating beta interferon (IFN-β) promoter activity. Recent studies also concluded that interactions between bICP0 and IRF7 inhibit trans-activation of IFN-β promoter activity. The C3HC4 zinc RING (really important new gene) finger located near the amino terminus of bICP0 is important for all known functions of bICP0. A recombinant virus that contains a single amino acid change in a well conserved cysteine residue of the C3HC4 zinc RING finger of bICP0 grows poorly in cultured cells, and does not reactivate from latency in cattle confirming that the C3HC4 zinc RING finger is crucial for viral growth and pathogenesis. A bICP0 deletion mutant does not induce plaques in permissive cells, but induces autophagy in a cell type dependent manner. In summary, the ability of bICP0 to stimulate productive infection, and repress IFN dependent transcription plays a crucial role in the BoHV-1 infection cycle.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE, 68583-0905, USA; E-mail: ; Tel.: +1 (402) 472-1890
| |
Collapse
|
19
|
Dexamethasone treatment of calves latently infected with bovine herpesvirus 1 leads to activation of the bICP0 early promoter, in part by the cellular transcription factor C/EBP-alpha. J Virol 2009; 83:8800-9. [PMID: 19553330 DOI: 10.1128/jvi.01009-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sensory neurons within trigeminal ganglia (TG) are the primary site for bovine herpesvirus 1 (BHV-1) latency. During latency, viral gene expression is restricted to the latency-related (LR) gene and the open reading frame ORF-E. We previously constructed an LR mutant virus that expresses LR RNA but not any of the known LR proteins. In contrast to calves latently infected with wild-type (wt) BHV-1 or the LR rescued virus, the LR mutant virus does not reactivate from latency following dexamethasone (DEX) treatment. In this study, we demonstrated that bICP0, but not bICP4, transcripts were consistently detected in TG of calves infected with the LR mutant or LR rescued virus following DEX treatment. Calves latently infected with the LR rescued virus but not the LR mutant virus expressed late transcripts, which correlated with shedding of infectious virus following DEX treatment. The bICP4 and bICP0 genes share a common immediate-early promoter, suggesting that this promoter was not consistently activated during DEX-induced reactivation from latency. The bICP0 gene also contains a novel early promoter that was activated by DEX in mouse neuroblastoma cells. Expression of a cellular transcription factor, C/EBP-alpha, was stimulated by DEX, and C/EBP-alpha expression was necessary for DEX induction of bICP0 early promoter activity. C/EBP-alpha directly interacted with bICP0 early promoter sequences that were necessary for trans activation by C/EBP-alpha. In summary, DEX treatment of latently infected calves induced cellular factors that stimulated bICP0 early promoter activity. Activation of bICP0 early promoter activity does not necessarily lead to late gene expression and virus shedding.
Collapse
|
20
|
The zinc RING finger of bovine herpesvirus 1-encoded bICP0 protein is crucial for viral replication and virulence. J Virol 2008; 82:12060-8. [PMID: 18842710 DOI: 10.1128/jvi.01348-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1) infected cell protein 0 (bICP0) stimulates productive infection, in part by activating viral gene expression. The C(3)HC(4) zinc RING finger of bICP0 is crucial for activating viral transcription and productive infection. In this study, we used a bacterial artificial chromosome containing a wild-type (wt) virulent BHV-1 strain to generate a single amino acid mutation in the C(3)HC(4) zinc RING finger of bICP0. This virus (the 51g mutant) contains a cysteine-to-glycine mutation (51st amino acid) in the C(3)HC(4) zinc RING finger of bICP0. A plasmid expressing the 51g mutant protein did not transactivate viral promoter activity as efficiently as wt bICP0. The 51g mutant virus expressed higher levels of the bICP0 protein than did the 51g rescued virus (51gR) but yielded reduced virus titers following infection of permissive bovine cells. The 51g mutant virus, but not the 51gR virus, grew poorly in bovine cells pretreated with imiquimod to stimulate interferon production. During acute infection of calves, levels of infectious virus were 2 to 3 logs lower in ocular or nasal swabs with 51g than with 51gR. Calves latently infected with the 51g mutant did not reactivate from latency because virus shedding did not occur in ocular or nasal cavities. As expected, calves latently infected with 51gR reactivated from latency following dexamethasone treatment. These studies demonstrate that mutation of a single well-conserved cysteine residue in the C(3)HC(4) zinc RING finger of bICP0 has dramatic effects on the growth properties of BHV-1.
Collapse
|
21
|
Perez S, Meyer F, Saira K, Doster A, Jones C. Premature expression of the latency-related RNA encoded by bovine herpesvirus type 1 correlates with higher levels of beta interferon RNA expression in productively infected cells. J Gen Virol 2008; 89:1338-1345. [PMID: 18474548 DOI: 10.1099/vir.0.83481-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bovine herpesvirus type 1 (BHV-1) is an important pathogen that can initiate bovine respiratory disease complex. Like other members of the subfamily Alphaherpesvirinae, BHV-1 establishes latency in sensory neurons. The latency-related (LR) gene expresses a family of alternatively spliced transcripts in infected sensory neurons that have the potential to encode several LR proteins. An LR mutant virus that contains three stop codons near the 5' terminus of the first open reading frame in the LR gene does not express two LR proteins or reactivate from latency. In addition, the LR mutant virus induces higher levels of apoptosis in trigeminal ganglionic neurons and grows less efficiently in certain tissues of infected calves. In spite of the reduced pathogenesis, the LR mutant virus, wild-type BHV-1 and the LR rescued virus exhibit identical growth properties in cultured bovine cells. In this study, we demonstrated that during early phases of productive infection the LR mutant virus expressed higher levels of LR-RNA relative to the LR rescued virus or wt BHV-1. Bovine kidney cells infected with the LR mutant virus also induced higher levels of beta interferon RNA and interferon response genes. These results suggest that inappropriate expression of LR-RNA, in the absence of LR protein expression, may influence the latency-reactivation cycle and pathogenic potential of BHV-1.
Collapse
Affiliation(s)
- Sandra Perez
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| | - Florencia Meyer
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.,Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| | - Kazima Saira
- Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA.,Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| | - Alan Doster
- Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA.,Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| | - Clinton Jones
- Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA.,Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| |
Collapse
|
22
|
A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex and development of improved vaccines. Anim Health Res Rev 2008; 8:187-205. [PMID: 18218160 DOI: 10.1017/s146625230700134x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infection of cattle by bovine herpesvirus type 1 (BHV-1) can lead to upper respiratory tract disorders, conjunctivitis, genital disorders and immune suppression. BHV-1-induced immune suppression initiates bovine respiratory disease complex (BRDC), which costs the US cattle industry approximately 3 billion dollars annually. BHV-1 encodes at least three proteins that can inhibit specific arms of the immune system: (i) bICP0 inhibits interferon-dependent transcription, (ii) the UL41.5 protein inhibits CD8+ T-cell recognition of infected cells by preventing trafficking of viral peptides to the surface of the cells and (iii) glycoprotein G is a chemokine-binding protein that prevents homing of lymphocytes to sights of infection. Following acute infection of calves, BHV-1 can also infect and induce high levels of apoptosis of CD4+ T-cells. Consequently, the ability of BHV-1 to impair the immune response can lead to BRDC. Following acute infection, BHV-1 establishes latency in sensory neurons of trigeminal ganglia (TG) and germinal centers of pharyngeal tonsil. Periodically BHV-1 reactivates from latency, virus is shed, and consequently virus transmission occurs. Two viral genes, the latency related gene and ORF-E are abundantly expressed during latency, suggesting that they regulate the latency-reactivation cycle. The ability of BHV-1 to enter permissive cells, infect sensory neurons and promote virus spread from sensory neurons to mucosal surfaces following reactivation from latency is also regulated by several viral glycoproteins. The focus of this review is to summarize the biology of BHV-1 and how this relates to BRDC.
Collapse
|
23
|
Meyer F, Perez S, Jiang Y, Zhou Y, Henderson G, Jones C. Identification of a novel protein encoded by the latency-related gene of bovine herpesvirus 1. J Neurovirol 2008; 13:569-78. [PMID: 18097888 PMCID: PMC7095411 DOI: 10.1080/13550280701620754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The latency-related (LR) RNA encoded by bovine herpesvirus 1 (BHV-1) is abundantly expressed and alternatively spliced in trigeminal ganglia. A mutant BHV-1 strain that contains three stop codons at the beginning of LR open reading frame (ORF)-2 (LR mutant virus) does not express ORF-2 or an adjacent reading frame that lacks an initiating ATG (RF-C). Calves latently infected with wild-type (wt) BHV-1, but not with the LR mutant virus, reactivate from latency, indicating that proteins encoded by the LR gene regulate the latency-reactivation cycle. The LR gene also contains another large ORF (ORF-1) that is approximately 200 bp downstream of stop codons inserted at the N-terminus of ORF-2. To test whether the LR mutant virus can expresses ORF-1, the authors developed antiserum directed against ORF-1. The ORF-1 antiserum recognizes specific proteins in bovine cells productively infected with wt BHV-1. ORF-1 protein expression is reduced, but not blocked, when bovine cells are infected with the LR mutant virus. Confocal microscopy demonstrated ORF-1 is present in the cytoplasm and nucleus of productively infected cells, whereas RF-C or a fusion protein containing RF-C localizes to the cytoplasm. Trigeminal ganglia from calves latently infected with wt BHV-1 contain neurons specifically stained with the ORF-1 antiserum. These studies suggest ORF-1 expression may be important for the BHV-1 latency-reactivation cycle.
Collapse
Affiliation(s)
- Florencia Meyer
- Nebraska Center for Virology, University of Nebraska, Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | | | | | | | | | |
Collapse
|
24
|
Perez S, Meyer F, Henderson G, Jiang Y, Sherman S, Doster A, Inman M, Jones C. A protein encoded by the bovine herpesvirus 1 open reading frame E gene induces neurite-like morphological changes in mouse neuroblastoma cells and is expressed in trigeminal ganglionic neurons. J Neurovirol 2007; 13:139-49. [PMID: 17505982 DOI: 10.1080/13550280701191459] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bovine herpes virus 1 (BHV-1), like other alpha-herpesvirinae subfamily members, establishes latency in sensory neurons. Periodically BHV-1 reactivates from latency, resulting in virus shedding and spread to uninfected cattle. Although reactivation from latency does not usually lead to recurrent disease, the latency-reactivation cycle is crucial for virus transmission. The latency-related (LR) RNA is abundantly expressed during latency, and expression of a LR encoded protein is necessary for dexamethasone-induced reactivation from latency in cattle. Within LR promoter sequences, a small open reading frame (ORF) was identified (ORF-E) that is antisense to the LR-RNA, and downstream of the bICP0 gene. ORF-E transcription is consistently detected in trigeminal ganglia (TG) of latently infected calves, suggesting ORF-E expression plays a role in the latency-reactivation cycle. Polyclonal antiserum directed against an ORF-E peptide or the entire ORF-E protein specifically recognizes the nucleus of sensory neurons in TG of latently infected calves. The ORF-E peptide-specific antiserum also recognizes a protein when mouse neuroblastoma cells (neuro-2A) are transfected with an ORF-E expression construct. In contrast to the growth inhibiting properties of the LR gene, stably transfected ORF-E-expressing cells were obtained. Neuro-2A cells stably transfected with a plasmid expressing ORF-E induced morphological changes that resembled neurite-like projections. In contrast, neurite-like projections were not observed following transfection of neuro-2A cells with an empty vector. These studies suggest that a protein encoded by ORF-E has the potential to alter the physiology or metabolism of neuronal cell types, which may be important for long-term latency.
Collapse
Affiliation(s)
- Sandra Perez
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583-0905, USA
| | | | | | | | | | | | | | | |
Collapse
|