1
|
Jamil Al-Obaidi MM, Desa MNM. Understanding the mechanisms underlying the disruption of the blood-brain barrier in parasitic infections. J Neurosci Res 2024; 102. [PMID: 38284852 DOI: 10.1002/jnr.25288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
Parasites have a significant impact on the neurological, cognitive, and mental well-being of humans, with a global population of over 1 billion individuals affected. The pathogenesis of central nervous system (CNS) injury in parasitic diseases remains limited, and prevention and control of parasitic CNS infections remain significant areas of research. Parasites, encompassing both unicellular and multicellular organisms, have intricate life cycles and possess the ability to infect a diverse range of hosts, including the human population. Parasitic illnesses that impact the central and peripheral nervous systems are a significant contributor to morbidity and mortality in low- to middle-income nations. The precise pathways through which neurotropic parasites infiltrate the CNS by crossing the blood-brain barrier (BBB) and cause neurological harm remain incompletely understood. Investigating brain infections caused by parasites is closely linked to studying neuroinflammation and cerebral impairment. The exact molecular and cellular mechanisms involved in this process remain incomplete, but understanding the exact mechanisms could provide insight into their pathogenesis and potentially reveal novel therapeutic targets. This review paper explores the underlying mechanisms involved in the development of neurological disorders caused by parasites, including parasite-derived elements, host immune responses, and modifications in tight junctions (TJs) proteins.
Collapse
Affiliation(s)
- Mazen M Jamil Al-Obaidi
- University of Technology and Applied Sciences, Rustaq College of Education, Science Department (Biology Unit), Rrustaq, Sultante of Oman
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Leleu I, Genete D, Desnoulez SS, Saidi N, Brodin P, Lafont F, Tomavo S, Pied S. A noncanonical autophagy is involved in the transfer of Plasmodium-microvesicles to astrocytes. Autophagy 2021; 18:1583-1598. [PMID: 34747313 DOI: 10.1080/15548627.2021.1993704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cerebral malaria is a neuroinflammatory disease induced by P. falciparum infection. In animal models, the neuro-pathophysiology of cerebral malaria results from the sequestration of infected red blood cells (iRBCs) in microvessels that promotes the activation of glial cells in the brain. This activation provokes an exacerbated inflammatory response characterized by the secretion of proinflammatory cytokines and chemokines, leading to brain infiltration by pathogenic CD8+ T lymphocytes. Astrocytes are a major subtype of brain glial cells that play an important role in maintaining the homeostasis of the central nervous system, the integrity of the brain-blood barrier and in mounting local innate immune responses. We have previously shown that parasitic microvesicles (PbA-MVs) are transferred from iRBCs to astrocytes. The present study shows that an unconventional LC3-mediated autophagy pathway independent of ULK1 is involved in the transfer and degradation of PbA-MVs inside the astrocytes. We further demonstrate that inhibition of the autophagy process by treatment with 3-methyladenine blocks the transfer of PbA-MVs, which remain localized in the astrocytic cell membrane and are not internalized. Moreover, bafilomycin A1, another drug against autophagy promotes the accumulation of PbA-MVs inside the astrocytes by inhibiting the fusion with lysosomes, and prevents ECM in mice infected with PbA. Finally, we establish that RUBCN/rubicon or ATG5 silencing impede astrocyte production in CCL2 and CXCL10 chemokines induced by PbA stimulation. Altogether, our data suggest that a non-canonical autophagy-lysosomal pathway may play a key role in cerebral malaria through regulation of brain neuro-inflammation by astrocytes.
Collapse
Affiliation(s)
- Inès Leleu
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France
| | - Delphine Genete
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France
| | | | - Nasreddine Saidi
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France
| | - Priscille Brodin
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France
| | - Frank Lafont
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France.,Institut Pasteur De Lille, Univ. Lille, Cnrs, Inserm, Chu Lille, Lille, France
| | - Stanislas Tomavo
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylviane Pied
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France
| |
Collapse
|
3
|
Lima MN, Freitas RJRX, Passos BABR, Darze AMG, Castro-Faria-Neto HC, Maron-Gutierrez T. Neurovascular Interactions in Malaria. Neuroimmunomodulation 2021; 28:108-117. [PMID: 33951667 DOI: 10.1159/000515557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Malaria is caused by Plasmodium infection and remains a serious public health problem worldwide, despite control efforts. Malaria can progress to severe forms, affecting multiple organs, including the brain causing cerebral malaria (CM). CM is the most severe neurological complication of malaria, and cognitive and behavior deficits are commonly reported in surviving patients. The number of deaths from malaria has been reducing in recent years, and as a consequence, neurological sequelae have been more evident. Neurological damage in malaria might be related to the neuroinflammation, characterized by glia cell activation, neuronal apoptosis and changes in the blood-brain barrier (BBB) integrity. The neurovascular unit (NVU) is responsible for maintaining the homeostasis of the BBB. Endothelial and pericytes cells in the cerebral microvasculature and neural cells, as astrocytes, neurons, and microglia, compose the NVU. The NVU can be disturbed by parasite metabolic products, such as heme and hemozoin, or cytokines that can promote activation of endothelial and glial cells and lead to increased BBB permeability and subsequently neurodegeneration. In this review, we will approach the main changes that happen in the cells of the NVU due to neuroinflammation caused by malaria infection, and elucidate how the systemic pathophysiology is involved in the onset and progression of CM.
Collapse
Affiliation(s)
- Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo J R X Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Beatriz A B R Passos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Maria G Darze
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Velagapudi R, Kosoko AM, Olajide OA. Induction of Neuroinflammation and Neurotoxicity by Synthetic Hemozoin. Cell Mol Neurobiol 2019; 39:1187-1200. [PMID: 31332667 PMCID: PMC6764936 DOI: 10.1007/s10571-019-00713-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022]
Abstract
Hemozoin produced by Plasmodium falciparum during malaria infection has been linked to the neurological dysfunction in cerebral malaria. In this study, we determined whether a synthetic form of hemozoin (sHZ) produces neuroinflammation and neurotoxicity in cellular models. Incubation of BV-2 microglia with sHZ (200 and 400 µg/ml) induced significant elevation in the levels of TNFα, IL-6, IL-1β, NO/iNOS, phospho-p65, accompanied by an increase in DNA binding of NF-κB. Treatment of BV-2 microglia with sHZ increased protein levels of NLRP3 with accompanying increase in caspase-1 activity. In the presence of NF-κB inhibitor BAY11-7082 (10 µM), there was attenuation of sHZ-induced release of pro-inflammatory cytokines, NO/iNOS. In addition, increase in caspase-1/NLRP3 inflammasome activation was blocked by BAY11-7082. Pre-treatment with BAY11-7082 also reduced both phosphorylation and DNA binding of the p65 sub-unit. The NLRP3 inhibitor CRID3 (100 µM) did not prevent sHZ-induced release of TNFα and IL-6. However, production of IL-1β, NO/iNOS as well as caspase-1/NLRP3 activity was significantly reduced in the presence of CRID3. Incubation of differentiated neural progenitor (ReNcell VM) cells with sHZ resulted in a reduction in cell viability, accompanied by significant generation of cellular ROS and increased activity of caspase-6, while sHZ-induced neurotoxicity was prevented by N-acetylcysteine and Z-VEID-FMK. Taken together, this study shows that the synthetic form of hemozoin induces neuroinflammation through the activation of NF-κB and NLRP3 inflammasome. It is also proposed that sHZ induces ROS- and caspase-6-mediated neurotoxicity. These results have thrown more light on the actions of malarial hemozoin in the neurobiology of cerebral malaria.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.,Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ayokulehin M Kosoko
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
5
|
Tunon-Ortiz A, Lamb TJ. Blood brain barrier disruption in cerebral malaria: Beyond endothelial cell activation. PLoS Pathog 2019; 15:e1007786. [PMID: 31247027 PMCID: PMC6597102 DOI: 10.1371/journal.ppat.1007786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Arnulfo Tunon-Ortiz
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Neurosciences Graduate Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Tracey J. Lamb
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
6
|
Nyariki JN, Ochola LA, Jillani NE, Nyamweya NO, Amwayi PE, Yole DS, Azonvide L, Isaac AO. Oral administration of Coenzyme Q 10 protects mice against oxidative stress and neuro-inflammation during experimental cerebral malaria. Parasitol Int 2019; 71:106-120. [PMID: 30981893 DOI: 10.1016/j.parint.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
In animal model of experimental cerebral malaria (ECM), the genesis of neuropathology is associated with oxidative stress and inflammatory mediators. There is limited progress in the development of new approaches to the treatment of cerebral malaria. Here, we tested whether oral supplementation of Coenzyme Q10 (CoQ10) would offer protection against oxidative stress and brain associated inflammation following Plasmodium berghei ANKA (PbA) infection in C57BL/6 J mouse model. For this purpose, one group of C57BL/6 mice was used as control; second group of mice were orally supplemented with 200 mg/kg CoQ10 and then infected with PbA and the third group was PbA infected alone. Clinical, biochemical, immunoblot and immunological features of ECM was monitored. We observed that oral administration of CoQ10 for 1 month and after PbA infection was able to improve survival, significantly reduced oedema, TNF-α and MIP-1β gene expression in brain samples in PbA infected mice. The result also shows the ability of CoQ10 to reduce cholesterol and triglycerides lipids, levels of matrix metalloproteinases-9, angiopoietin-2 and angiopoietin-1 in the brain. In addition, CoQ10 was very effective in decreasing NF-κB phosphorylation. Furthermore, CoQ10 supplementation abrogated Malondialdehyde, and 8-OHDG and restored cellular glutathione. These results constitute the first demonstration that oral supplementation of CoQ10 can protect mice against PbA induced oxidative stress and neuro-inflammation usually observed in ECM. Thus, the need to study CoQ10 as a candidate of antioxidant and immunomodulatory molecule in ECM and testing it in clinical studies either alone or in combination with antimalaria regimens to provide insight into a potential translatable therapy.
Collapse
Affiliation(s)
- James N Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya.
| | - Lucy A Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P.O. Box, 24481, 00502 Karen, Kenya
| | - Ngalla E Jillani
- Department of Non-communicable diseases, Institute of Primate Research, P.O. Box, 24481, 00502 Karen, Kenya
| | - Nemwel O Nyamweya
- Departmwent of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton, Kenya
| | - Peris E Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| | - Dorcas S Yole
- School of Biological and Life Sciences, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| | - Laurent Azonvide
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alfred Orina Isaac
- School of Health Sciences, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| |
Collapse
|
7
|
Noumbissi ME, Galasso B, Stins MF. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models. Fluids Barriers CNS 2018; 15:12. [PMID: 29688865 PMCID: PMC5911972 DOI: 10.1186/s12987-018-0097-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The vertebrate blood–brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.
Collapse
Affiliation(s)
- Midrelle E Noumbissi
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Bianca Galasso
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Monique F Stins
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Differential modulation of glial cell mediated neuroinflammation in Plasmodium berghei ANKA infection by TGF β and IL 6. Cytokine 2017; 99:249-259. [DOI: 10.1016/j.cyto.2017.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023]
|
9
|
Capuccini B, Lin J, Talavera-López C, Khan SM, Sodenkamp J, Spaccapelo R, Langhorne J. Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria. Sci Rep 2016; 6:39258. [PMID: 27991544 PMCID: PMC5171943 DOI: 10.1038/srep39258] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/22/2016] [Indexed: 02/08/2023] Open
Abstract
Cerebral malaria is a pathology involving inflammation in the brain. There are many immune cell types activated during this process, but there is little information on the response of microglia, in this severe complication. We examined microglia by genome wide transcriptomic analysis in a model of experimental cerebral malaria (ECM), in which C57BL/6 mice are infected with Plasmodium berghei ANKA. Thousands of transcripts were differentially expressed in microglia at two different time points during infection. Proliferation of microglia was a dominant feature before the onset of ECM, and supporting this, we observed an increase in numbers of these cells in the brain. When cerebral malaria symptoms were manifest, genes involved in immune responses and chemokine production were upregulated, which were possibly driven by Type I Interferon. Consistent with this hypothesis, in vitro culture of a microglial cell line with Interferon-β, but not infected red blood cells, resulted in production of several of the chemokines shown to be upregulated in the gene expression analysis. It appears that these responses are associated with ECM, as microglia from mice infected with a mutant P. berghei parasite (ΔDPAP3), which does not cause ECM, did not show the same level of activation or proliferation.
Collapse
Affiliation(s)
| | - Jingwen Lin
- The Francis Crick Institute, London NW1 1AT, UK
| | | | - Shahid M. Khan
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | | | - Roberta Spaccapelo
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | | |
Collapse
|
10
|
Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria. PLoS Pathog 2015; 11:e1005210. [PMID: 26562533 PMCID: PMC4643016 DOI: 10.1371/journal.ppat.1005210] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
There is significant evidence that brain-infiltrating CD8+ T cells play a central role in the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the mechanisms through which they mediate their pathogenic activity during malaria infection remain poorly understood. Utilizing intravital two-photon microscopy combined with detailed ex vivo flow cytometric analysis, we show that brain-infiltrating T cells accumulate within the perivascular spaces of brains of mice infected with both ECM-inducing (P. berghei ANKA) and non-inducing (P. berghei NK65) infections. However, perivascular T cells displayed an arrested behavior specifically during P. berghei ANKA infection, despite the brain-accumulating CD8+ T cells exhibiting comparable activation phenotypes during both infections. We observed T cells forming long-term cognate interactions with CX3CR1-bearing antigen presenting cells within the brains during P. berghei ANKA infection, but abrogation of this interaction by targeted depletion of the APC cells failed to prevent ECM development. Pathogenic CD8+ T cells were found to colocalize with rare apoptotic cells expressing CD31, a marker of endothelial cells, within the brain during ECM. However, cellular apoptosis was a rare event and did not result in loss of cerebral vasculature or correspond with the extensive disruption to its integrity observed during ECM. In summary, our data show that the arrest of T cells in the perivascular compartments of the brain is a unique signature of ECM-inducing malaria infection and implies an important role for this event in the development of the ECM-syndrome. Cerebral malaria is the most severe complication of Plasmodium falciparum infection. Utilizing the murine experimental model of cerebral malaria (ECM), it has been found that CD8+ T cells are a key immune cell type responsible for development of cerebral pathology during malaria infection. To identify how CD8+ T cells cause cerebral pathology during malaria infection, in this study we have performed detailed in vivo analysis (two photon imaging) of CD8+ T cells within the brains of mice infected with strains of malaria parasites that cause or do not cause ECM. We found that CD8+ T cells appear to accumulate in similar numbers and in comparable locations within the brains of mice infected with parasites that do or do not cause ECM. Importantly, however, brain accumulating CD8+ T cells displayed significantly different movement characteristics during the different infections. CD8+ T cells interacted with myeloid cells within the brain during infection with parasites causing ECM, but this association was not required for development of cerebral complications. Furthermore, our results suggest that CD8+ T cells do not cause ECM through the widespread killing of brain microvessel cells. The results in this study significantly improve our understanding of the ways through which CD8+ T cells can mediate cerebral pathology during malaria infection.
Collapse
|
11
|
Etiopathogenesis and Pathophysiology of Malaria. HUMAN AND MOSQUITO LYSOZYMES 2015. [PMCID: PMC7123976 DOI: 10.1007/978-3-319-09432-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malaria is a parasitic disease caused by Plasmodium protozoan parasites and transmitted by Anopheles mosquitoes. The disease is diffused in tropical areas, where it is associated with high morbidity and mortality. P. falciparum is the most dangerous species, mainly affecting young children. The parasite cycle occurs both in humans (asexual stages) and in mosquitoes (sexual stages). In humans, Plasmodium grows and multiplies within red blood cells using hemoglobin as essential source of nutrients and energy. However, this process generates toxic heme that the parasite aggregates into an insoluble inert biocrystal called hemozoin. This molecule sequesters in various organs (liver, spleen, and brain), potentially contributing to the development of malaria immunopathogenesis. Uncomplicated falciparum malaria clinical frame ranges from asymptomatic infection to classic symptoms such as fever, chills, sweating, headache, and muscle aches. However, malaria can also evolve into severe life-threatening complications, including cerebral malaria, severe anemia, respiratory distress, and acute renal failure.
Collapse
|
12
|
Polimeni M, Prato M. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood-brain barrier integrity? Fluids Barriers CNS 2014; 11:1. [PMID: 24467887 PMCID: PMC3905658 DOI: 10.1186/2045-8118-11-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/24/2014] [Indexed: 12/23/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM.
Collapse
Affiliation(s)
| | - Mauro Prato
- Dipartimento di Neuroscienze, Università di Torino, C,so Raffaello 30, 10125 Torino, Italy.
| |
Collapse
|
13
|
Natural haemozoin induces expression and release of human monocyte tissue inhibitor of metalloproteinase-1. PLoS One 2013; 8:e71468. [PMID: 23967215 PMCID: PMC3743797 DOI: 10.1371/journal.pone.0071468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/29/2013] [Indexed: 11/25/2022] Open
Abstract
Recently matrix metalloproteinase-9 (MMP-9) and its endogenous inhibitor (tissue inhibitor of metalloproteinase-1, TIMP-1) have been implicated in complicated malaria. In vivo, mice with cerebral malaria (CM) display high levels of both MMP-9 and TIMP-1, and in human patients TIMP-1 serum levels directly correlate with disease severity. In vitro, natural haemozoin (nHZ, malarial pigment) enhances monocyte MMP-9 expression and release. The present study analyses the effects of nHZ on TIMP-1 regulation in human adherent monocytes. nHZ induced TIMP-1 mRNA expression and protein release, and promoted TNF-α, IL-1β, and MIP-1α/CCL3 production. Blocking antibodies or recombinant cytokines abrogated or mimicked nHZ effects on TIMP-1, respectively. p38 MAPK and NF-κB inhibitors blocked all nHZ effects on TIMP-1 and pro-inflammatory molecules. Still, total gelatinolytic activity was enhanced by nHZ despite TIMP-1 induction. Collectively, these data indicate that nHZ induces inflammation-mediated expression and release of human monocyte TIMP-1 through p38 MAPK- and NF-κB-dependent mechanisms. However, TIMP-1 induction is not sufficient to counterbalance nHZ-dependent MMP-9 enhancement. Future investigation on proteinase-independent functions of TIMP-1 (i.e. cell survival promotion and growth/differentiation inhibition) is needed to clarify the role of TIMP-1 in malaria pathogenesis.
Collapse
|
14
|
D'Alessandro S, Basilico N, Prato M. Effects of Plasmodium falciparum-infected erythrocytes on matrix metalloproteinase-9 regulation in human microvascular endothelial cells. ASIAN PAC J TROP MED 2013; 6:195-9. [PMID: 23375032 DOI: 10.1016/s1995-7645(13)60022-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/26/2012] [Accepted: 01/20/2013] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To investigate the regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in human microvascular endothelium (HMEC-1) exposed to erythrocytes infected by different strains of Plasmodium falciparum (P. falciparum). METHODS HMEC-1 cells were co-incubated for 72 h with erythrocytes infected by late stage trophozoite of D10 (chloroquine-sensitive) or W2 (chloroquine-resistant) P. falciparum strains. Cell supernatants were then collected and the levels of pro- or active gelatinases MMP-9 and MMP-2 were evaluated by gelatin zymography and densitometry. The release of pro-MMP-9, MMP-3, MMP-1 and TIMP-1 proteins was analyzed by western blotting and densitometry. RESULTS Infected erythrocytes induced de novo proMMP-9 and MMP-9 release. Neither basal levels of proMMP-2 were altered, nor active MMP-2 was found. MMP-3 and MMP-1 secretion was significantly enhanced, whereas basal TIMP-1 was unaffected. All effects were similar for both strains. CONCLUSIONS P. falciparum parasites, either chloroquine-sensitive or -resistant, induce the release of active MMP-9 protein from human microvascular endothelium, by impairing balances between proMMP-9 and its inhibitor, and by enhancing the levels of its activators. This work provides new evidence on MMP involvement in malaria, pointing at MMP-9 as a possible target in adjuvant therapy.
Collapse
Affiliation(s)
- Sarah D'Alessandro
- Dipartimento di Sanità Pubblica-Microbiologia-Virologia, Università di Milano, Milano, Italy
| | | | | |
Collapse
|
15
|
Khadjavi A, Valente E, Giribaldi G, Prato M. Involvement of p38 MAPK in haemozoin-dependent MMP-9 enhancement in human monocytes. Cell Biochem Funct 2013; 32:5-15. [PMID: 23468369 DOI: 10.1002/cbf.2963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/05/2012] [Accepted: 01/21/2013] [Indexed: 01/01/2023]
Abstract
The lipid moiety of natural haemozoin (nHZ, malarial pigment) was previously shown to enhance expression and release of human monocyte matrix metalloproteinase-9 (MMP-9), and a major role for 15-(S,R)-hydroxy-6,8,11,13-eicosatetraenoic acid (15-HETE), a nHZ lipoperoxidation product, was proposed. Here, the underlying mechanisms were investigated, focusing on the involvement of mitogen-activated protein kinases (MAPKs). Results showed that nHZ promoted either early or late p38 MAPK phosphorylation; however, nHZ did not modify basal phosphorylation/expression ratios of extracellular signal-regulated kinase-1/2 and c-jun N-terminal kinase-1/2. 15-HETE mimicked nHZ effects on p38 MAPK, whereas lipid-free synthetic (s)HZ and delipidized (d)HZ did not. Consistently, both nHZ and 15-HETE also promoted phosphorylation of MAPK-activated protein kinase-2, a known p38 MAPK substrate; such an effect was abolished by SB203580, a synthetic p38 MAPK inhibitor. SB203580 also abrogated nHZ-dependent and 15-HETE-dependent enhancement of MMP-9 mRNA and protein (latent and activated forms) levels in cell lysates and supernatants. Collectively, these data suggest that in human monocytes, nHZ and 15-HETE upregulate MMP-9 expression and secretion through activation of p38 MAPK pathway. The present work provides new evidence on mechanisms underlying MMP-9 deregulation in malaria, which might be helpful to design new specific drugs for adjuvant therapy in complicated malaria.
Collapse
Affiliation(s)
- Amina Khadjavi
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Turin, Italy
| | | | | | | |
Collapse
|
16
|
Tiberti N, Matovu E, Hainard A, Enyaru JC, Lejon V, Robin X, Turck N, Ngoyi DM, Krishna S, Bisser S, Courtioux B, Büscher P, Kristensson K, Ndung'u JM, Sanchez JC. New biomarkers for stage determination in Trypanosoma brucei rhodesiense sleeping sickness patients. Clin Transl Med 2013; 2:1. [PMID: 23369533 PMCID: PMC3561069 DOI: 10.1186/2001-1326-2-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/25/2012] [Indexed: 12/26/2022] Open
Abstract
Accurate stage determination is crucial in the choice of treatment for patients suffering from sleeping sickness, also known as human African trypanosomiasis (HAT). Current staging methods, based on the counting of white blood cells (WBC) and the detection of parasites in the cerebrospinal fluid (CSF) have limited accuracy. We hypothesized that immune mediators reliable for staging T. b. gambiense HAT could also be used to stratify T. b. rhodesiense patients, the less common form of HAT. A population comprising 85 T. b. rhodesiense patients, 14 stage 1 (S1) and 71 stage 2 (S2) enrolled in Malawi and Uganda, was investigated. The CSF levels of IgM, MMP-9, CXCL13, CXCL10, ICAM-1, VCAM-1, neopterin and B2MG were measured and their staging performances evaluated using receiver operating characteristic (ROC) analyses. IgM, MMP-9 and CXCL13 were the most accurate markers for stage determination (partial AUC 88%, 86% and 85%, respectively). The combination in panels of three molecules comprising CXCL13-CXCL10-MMP-9 or CXCL13-CXCL10-IgM significantly increased their staging ability to partial AUC 94% (p value < 0.01). The present study highlighted new potential markers for stage determination of T. b. rhodesiense patients. Further investigations are needed to better evaluate these molecules, alone or in panels, as alternatives to WBC to make reliable choice of treatment.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Macrophage inflammatory protein-1alpha mediates matrix metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment. ASIAN PAC J TROP MED 2012; 4:925-30. [PMID: 22118025 DOI: 10.1016/s1995-7645(11)60220-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the role of macrophage inflammatory protein-1alpha (MIP-1alpha) in the detrimental enhancement of matrix metalloproteinase-9 (MMP-9) expression, release and activity induced by phagocytosis of malarial pigment (haemozoin, HZ) in human monocytes. METHODS Human adherent monocytes were unfed/fed with native HZ for 2 h. After 24 hours, MIP-1alpha production was evaluated by ELISA in cell supernatants. Alternatively, HZ-unfed/fed monocytes were treated in presence/absence of anti-human MIP-1alpha blocking antibodies or recombinant human MIP-1alpha for 15 h (RNA studies) or 24 h (protein studies); therefore, MMP-9 mRNA expression was evaluated in cell lysates by Real Time RT-PCR, whereas proMMP-9 and active MMP-9 protein release were measured in cell supernatants by Western blotting and gelatin zymography. RESULTS Phagocytosis of HZ by human monocytes increased production of MIP-1 alpha, mRNA expression of MMP-9 and protein release of proMMP-9 and active MMP-9. All the HZ-enhancing effects on MMP-9 were abrogated by anti-human MIP-1alpha blocking antibodies and mimicked by recombinant human MIP-1alpha. CONCLUSIONS The present work suggests a role for MIP-1alpha in the HZ-dependent enhancement of MMP-9 expression, release and activity observed in human monocytes, highlighting new detrimental effects of HZ-triggered proinflammatory response by phagocytic cells in falciparum malaria.
Collapse
|
18
|
Grau GER, Craig AG. Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiol 2012; 7:291-302. [DOI: 10.2217/fmb.11.155] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cerebral malaria is one of a number of clinical syndromes associated with infection by human malaria parasites of the genus Plasmodium. The etiology of cerebral malaria derives from sequestration of parasitized red cells in brain microvasculature and is thought to be enhanced by the proinflammatory status of the host and virulence characteristics of the infecting parasite variant. In this article we examine the range of factors thought to influence the development of Plasmodium falciparum cerebral malaria in humans and review the evidence to support their role.
Collapse
Affiliation(s)
- Georges Emile Raymond Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, The University of Sydney, Camperdown NSW 2042, Australia
- La Jolla Infectious Disease Institute, San Diego, CA 92109, USA
| | | |
Collapse
|
19
|
Malarial pigment does not induce MMP-2 and TIMP-2 protein release by human monocytes. ASIAN PAC J TROP MED 2012; 4:756. [PMID: 21967702 DOI: 10.1016/s1995-7645(11)60187-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Geurts N, Opdenakker G, Van den Steen PE. Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 2011; 133:257-79. [PMID: 22138604 DOI: 10.1016/j.pharmthera.2011.11.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 10/28/2011] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with processes of tissue remodeling and are expressed in all infections with protozoan parasites. We here report the status of MMP research in malaria, trypanosomiasis, leishmaniasis and toxoplasmosis. In all these infections, the balances between MMPs and endogenous MMP inhibitors are disturbed, mostly in favor of active proteolysis. When the infection is associated with leukocyte influx into specific organs, immunopathology and collateral tissue damage may occur. These pathologies include cerebral malaria, sleeping sickness (human African trypanosomiasis), Chagas disease (human American trypanosomiasis), leishmaniasis and toxoplasmic encephalitis in immunocompromised hosts. Destruction of the integrity of the blood-brain barrier (BBB) is a common denominator that may be executed by leukocytic MMPs under the control of host cytokines and chemokines as well as influenced by parasite products. Mechanisms by which parasite-derived products alter host expression of MMP and endogenous MMP inhibitors, have only been described for hemozoin (Hz) in malaria. Hence, understanding these interactions in other parasitic infections remains an important challenge. Furthermore, the involved parasites are also known to produce their own metalloproteinases, and this forms an extra stimulus to investigate MMP inhibitory drugs as therapeutics. MMP inhibitors (MMPIs) may dampen collateral tissue damage, as is anecdotically reported for tetracyclines as MMP regulators in parasite infections.
Collapse
Affiliation(s)
- Nathalie Geurts
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Minderbroedersstraat 10, B3000 Leuven, Belgium
| | | | | |
Collapse
|
21
|
Prato M, D'Alessandro S, Van den Steen PE, Opdenakker G, Arese P, Taramelli D, Basilico N. Natural haemozoin modulates matrix metalloproteinases and induces morphological changes in human microvascular endothelium. Cell Microbiol 2011; 13:1275-85. [PMID: 21707906 DOI: 10.1111/j.1462-5822.2011.01620.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Severe malaria, including cerebral malaria (CM), is characterized by the sequestration of parasitized erythrocytes in the microvessels after cytoadherence to endothelial cells. Products of parasite origin, such as haemozoin (HZ), contribute to the pathogenesis of severe malaria by interfering with host inflammatory response. In human monocytes, HZ enhanced the levels of matrix metalloproteinase-9 (MMP-9), a protease involved in neuroinflammation. Here the effects of HZ on the regulation of MMPs by the human microvascular endothelial cell line HMEC-1 were investigated. Cells treated with natural (n)HZ appeared elongated instead of polygonal, and formed microtubule-like vessels on synthetic basement membrane. nHZ enhanced total gelatinolytic activity by inducing proMMP-9 and MMP-9 without affecting basal MMP-2. The level of the endogenous tissue inhibitor of MMP-9 (TIMP-1) was not altered by nHZ, while TIMP-2, the MMP-2 inhibitor, was enhanced. Additionally, nHZ induced MMP-1 and MMP-3, two enzymes sequentially involved in collagenolysis and proMMP-9 proteolytic activation. Lipid-free HZ did not reproduce nHZ effects. Present data suggest that the lipid moiety of HZ alters the MMP/TIMP balances and promotes the proteolytic activation of proMMP-9 in HMEC-1, thereby enhancing total gelatinolytic activity, cell activation and inflammation. These findings might help understanding the mechanisms of blood brain barrier damage during CM.
Collapse
Affiliation(s)
- Mauro Prato
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Serghides L. The Case for the Use of PPARγ Agonists as an Adjunctive Therapy for Cerebral Malaria. PPAR Res 2011; 2012:513865. [PMID: 21772838 PMCID: PMC3135089 DOI: 10.1155/2012/513865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/28/2011] [Indexed: 12/24/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection associated with high mortality even when highly effective antiparasitic therapy is used. Adjunctive therapies that modify the pathophysiological processes caused by malaria are a possible way to improve outcome. This review focuses on the utility of PPARγ agonists as an adjunctive therapy for the treatment of cerebral malaria. The current knowledge of PPARγ agonist use in malaria is summarized. Findings from experimental CNS injury and disease models that demonstrate the potential for PPARγ agonists as an adjunctive therapy for cerebral malaria are also discussed.
Collapse
Affiliation(s)
- Lena Serghides
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, University Health Network, 101 College Street, Suite 10-359, Toronto, ON, Canada M5G 1L7
| |
Collapse
|
23
|
Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria. J Trop Med 2011; 2011:628435. [PMID: 21760809 PMCID: PMC3134216 DOI: 10.1155/2011/628435] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/07/2011] [Indexed: 11/17/2022] Open
Abstract
It is generally accepted that the combination of both Plasmodium falciparum parasite and human host factors is involved in the pathogenesis of complicated severe malaria, including cerebral malaria (CM). Among parasite products, the malarial pigment haemozoin (HZ) has been shown to impair the functions of mononuclear and endothelial cells. Different CM models were associated with enhanced levels of matrix metalloproteinases (MMPs), a family of proteolytic enzymes able to disrupt subendothelial basement membrane and tight junctions and shed, activate, or inactivate cytokines, chemokines, and other MMPs through cleavage from their precursors. Among MMPs, a good candidate for targeted therapy might be MMP-9, whose mRNA and protein expression enhancement as well as direct proenzyme activation by HZ have been recently investigated in a series of studies by our group and others. In the present paper the role of HZ and MMP-9 in complicated malaria, as well as their interactions, will be discussed.
Collapse
|
24
|
Prato M, Gallo V, Giribaldi G, Aldieri E, Arese P. Role of the NF-κB transcription pathway in the haemozoin- and 15-HETE-mediated activation of matrix metalloproteinase-9 in human adherent monocytes. Cell Microbiol 2011; 12:1780-91. [PMID: 20678173 DOI: 10.1111/j.1462-5822.2010.01508.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Haemozoin (HZ, malarial pigment) is a crystalline ferriprotoporphyrin IX polymer derived from undigested host haemoglobin haem, present in late stages of Plasmodium falciparum-parasitized RBCs and in residual bodies shed after schizogony. It was shown previously that phagocytosed HZ or HZ-containing trophozoites increased monocyte matrix metalloproteinase-9 (MMP-9) activity and enhanced production of MMP-9-related cytokines TNF and IL-1beta. Here we show that in human monocytes the HZ/trophozoite phagocytosis effects and their recapitulation by 15(S,R)-hydroxy-6,8,11,13-eicosatetraenoic acid (15-HETE), a potent lipoperoxidation derivative generated by HZ from arachidonic acid via haem catalysis, were mediated via activation of NF-κB transcription pathway. After phagocytosis of HZ/trophozoites or treatment with 15-HETE, the NF-κB complex migrated to the nuclear fraction while the inhibitory cytosolic IκBalpha protein was phosphorylated and degraded. All HZ/trophozoite/15-HETE effects on MMP-9 activity and TNF/IL-1beta production were abrogated by quercetin, artemisinin and parthenolide, inhibitors of IκBalpha phosphorylation and subsequent degradation, NF-κB nuclear translocation, and NF-κB-p65 binding to DNA respectively. In conclusion, enhanced activation of MMP-9, and release of pro-inflammatory cytokines TNF and IL-1beta, a triad of effects involved in malaria pathogenesis, elicited in human monocytes by trophozoite and HZ phagocytosis and recapitulated by 15-HETE, appear to be causally connected to persisting activation of the NF-κB system.
Collapse
Affiliation(s)
- Mauro Prato
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Via Santena 5 bis, 10126 Torino, Italy
| | | | | | | | | |
Collapse
|
25
|
Peroxisome proliferator activating receptor (PPAR) in cerebral malaria (CM): a novel target for an additional therapy. Eur J Clin Microbiol Infect Dis 2010; 30:483-98. [PMID: 21140187 DOI: 10.1007/s10096-010-1122-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/13/2010] [Indexed: 12/16/2022]
Abstract
Cerebral malaria (CM) is a global life-threatening complication of Plasmodium infection and represents a major cause of morbidity and mortality among severe forms of malaria. Despite developing knowledge in understanding mechanisms of pathogenesis, the current anti-malarial agents are not sufficient due to drug resistance and various adverse effects. Therefore, there is an urgent need for the novel target and additional therapy. Recently, peroxisome proliferator-activated receptor (PPAR) a nuclear receptors (NR) and agonists of its isoforms (PPARγ, PPARα and PPARβ/δ) have been demonstrated to exhibit anti-inflammatory and immunomodulatory properties, which are driven to a new approach of research on inflammatory diseases. Although many studies on PPARs have confirmed their diverse biological role, there is a lack of knowledge of its therapeutic use in CM. The major objective of this review is to explore the possible experimental studies to link these two areas of research. We focus on the data describing the beneficial effects of this receptor in inflammation, which is observed as a basic pathology in CM. In conclusion, PPARs could be a novel target in treating inflammatory diseases, and continued work with the available and additional agonists screened from various sources may result in a potential new treatment for CM.
Collapse
|
26
|
Neuroinflammation and brain infections: historical context and current perspectives. ACTA ACUST UNITED AC 2010; 66:152-73. [PMID: 20883721 DOI: 10.1016/j.brainresrev.2010.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 12/25/2022]
Abstract
An overview of current concepts on neuroinflammation and on the dialogue between neurons and non-neuronal cells in three important infections of the central nervous systems (rabies, cerebral malaria, and human African trypanosomiasis or sleeping sickness) is here presented. Large numbers of cases affected by these diseases are currently reported. In the context of an issue dedicated to Camillo Golgi, historical notes on seminal discoveries on these diseases are also presented. Neuroinflammation is currently closely associated with pathogenetic mechanisms of chronic neurodegenerative diseases. Neuroinflammatory signaling in brain infections is instead relatively neglected in the neuroscience community, despite the fact that the above infections provide paradigmatic examples of alterations of the intercellular crosstalk between neurons and non-neuronal cells. In rabies, strategies of immune evasion of the host lead to silencing neuroinflammatory signaling. In the intravascular pathology which characterizes cerebral malaria, leukocytes and Plasmodium do not enter the brain parenchyma. In sleeping sickness, leukocytes and African trypanosomes invade the brain parenchyma at an advanced stage of infection. Both the latter pathologies leave open many questions on the targeting of neuronal functions and on the pathogenetic role of non-neuronal cells, and in particular astrocytes and microglia, in these diseases. All three infections are hallmarked by very severe clinical pictures and relative sparing of neuronal structure. Multidisciplinary approaches and a concerted action of the neuroscience community are needed to shed light on intercellular crosstalk in these dreadful brain diseases. Such effort could also lead to new knowledge on non-neuronal mechanisms which determine neuronal death or survival.
Collapse
|
27
|
Machado GF, Melo GD, Moraes OC, Souza MS, Marcondes M, Perri SH, Vasconcelos RO. Differential alterations in the activity of matrix metalloproteinases within the nervous tissue of dogs in distinct manifestations of visceral leishmaniasis. Vet Immunol Immunopathol 2010; 136:340-5. [DOI: 10.1016/j.vetimm.2010.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 11/27/2022]
|
28
|
Peng J, Kudrimoti S, Prasanna S, Odde S, Doerksen RJ, Pennaka HK, Choo YM, Rao KV, Tekwani BL, Madgula V, Khan SI, Wang B, Mayer AMS, Jacob MR, Tu LC, Gertsch J, Hamann MT. Structure-activity relationship and mechanism of action studies of manzamine analogues for the control of neuroinflammation and cerebral infections. J Med Chem 2010; 53:61-76. [PMID: 20017491 DOI: 10.1021/jm900672t] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinal isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g., Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3beta (GSK-3beta), which is a putative target of manzamines. On the basis of the results presented here, it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases.
Collapse
Affiliation(s)
- Jiangnan Peng
- Department of Pharmacognosy, The University of Mississippi, Oxford, Mississippi 38677, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mariani MM, Kielian T. Microglia in infectious diseases of the central nervous system. J Neuroimmune Pharmacol 2009; 4:448-61. [PMID: 19728102 PMCID: PMC2847353 DOI: 10.1007/s11481-009-9170-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/11/2009] [Indexed: 02/06/2023]
Abstract
Microglia are the resident macrophage population in the central nervous system (CNS) parenchyma and, as such, are poised to provide a first line of defense against invading pathogens. Microglia are endowed with a vast repertoire of pattern recognition receptors that include such family members as Toll-like receptors and phagocytic receptors, which collectively function to sense and eliminate microbes invading the CNS parenchyma. In addition, microglial activation elicits a broad range of pro-inflammatory cytokines and chemokines that are involved in the recruitment and subsequent activation of peripheral immune cells infiltrating the infected CNS. Studies from several laboratories have demonstrated the ability of microglia to sense and respond to a wide variety of pathogens capable of colonizing the CNS including bacterial, viral, and fungal species. This review will highlight the role of microglia in microbial recognition and the resultant antipathogen response that ensues in an attempt to clear these infections. Implications as to whether microglial activation is uniformly beneficial to the CNS or in some circumstances may exacerbate pathology will also be discussed.
Collapse
Affiliation(s)
- Monica M Mariani
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | | |
Collapse
|
30
|
Butchi NB, Pourciau S, Du M, Morgan TW, Peterson KE. Analysis of the neuroinflammatory response to TLR7 stimulation in the brain: comparison of multiple TLR7 and/or TLR8 agonists. THE JOURNAL OF IMMUNOLOGY 2008; 180:7604-12. [PMID: 18490763 DOI: 10.4049/jimmunol.180.11.7604] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activation of astrocytes and microglia and the production of proinflammatory cytokines and chemokines are often associated with virus infection in the CNS as well as a number of neurological diseases of unknown etiology. These inflammatory responses may be initiated by recognition of pathogen-associated molecular patterns (PAMPs) that stimulate TLRs. TLR7 and TLR8 were identified as eliciting antiviral effects when stimulated by viral ssRNA. In the present study, we examined the potential of TLR7 and/or TLR8 agonists to induce glial activation and neuroinflammation in the CNS by intracerebroventricular inoculation of TLR7 and/or TLR8 agonists in newborn mice. The TLR7 agonist imiquimod induced astrocyte activation and up-regulation of proinflammatory cytokines and chemokines, including IFN-beta, TNF, CCL2, and CXCL10. However, these responses were only of short duration when compared with responses induced by the TLR4 agonist LPS. Interestingly, some of the TLR7 and/or TLR8 agonists differed in their ability to activate glial cells as evidenced by their ability to induce cytokine and chemokine expression both in vivo and in vitro. Thus, TLR7 stimulation can induce neuroinflammatory responses in the brain, but individual TLR7 agonists may differ in their ability to stimulate cells of the CNS.
Collapse
Affiliation(s)
- Niranjan B Butchi
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
31
|
Silver KL, Kain KC, Liles WC. Endothelial activation and dysregulation: A common pathway to organ injury in infectious diseases associated with systemic inflammation. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ddmec.2008.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Szklarczyk A, Conant K, Owens DF, Ravin R, McKay RD, Gerfen C. Matrix metalloproteinase-7 modulates synaptic vesicle recycling and induces atrophy of neuronal synapses. Neuroscience 2007; 149:87-98. [PMID: 17826919 DOI: 10.1016/j.neuroscience.2007.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/02/2007] [Accepted: 08/02/2007] [Indexed: 12/01/2022]
Abstract
Matrix metalloproteinase-7 (MMP-7) belongs to a family of zinc dependent endopeptidases that are expressed in a variety of tissues including the brain. MMPs are known to be potent mediators of pericellular proteolysis and likely mediators of dynamic remodelling of neuronal connections. While an association between proteases and the neuronal synapse is emerging, a full understanding of this relationship is lacking. Here, we show that MMP-7 alters the structure and function of presynaptic terminals without affecting neuronal survival. Bath application of recombinant MMP-7 to cultured rat neurons induced long-lasting inhibition of vesicular recycling as measured by synaptotagmin 1 antibody uptake assays and FM4-64 optical imaging. MMP-7 application resulted in reduced abundance of vesicular and active zone proteins locally within synaptic terminals although their general levels remained unaltered. Finally, chronic application of the protease resulted in synaptic atrophy, including smaller terminals and fewer synaptic vesicles, as determined by electron microscopy. Together these results suggest that MMP-7 is a potent modulator of synaptic vesicle recycling and synaptic ultrastructure and that elevated levels of the enzyme, as may occur with brain inflammation, may adversely influence neurotransmission.
Collapse
Affiliation(s)
- A Szklarczyk
- Laboratory of Systems Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|