1
|
Omura S, Kawai E, Sato F, Martinez NE, Minagar A, Al-Kofahi M, Yun JW, Cvek U, Trutschl M, Alexander JS, Tsunoda I. Theiler's Virus-Mediated Immunopathology in the CNS and Heart: Roles of Organ-Specific Cytokine and Lymphatic Responses. Front Immunol 2018; 9:2870. [PMID: 30619258 PMCID: PMC6295469 DOI: 10.3389/fimmu.2018.02870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces different diseases in the central nervous system (CNS) and heart, depending on the mouse strains and time course, with cytokines playing key roles for viral clearance and immune-mediated pathology (immunopathology). In SJL/J mice, TMEV infection causes chronic TMEV-induced demyelinating disease (TMEV-IDD) in the spinal cord about 1 month post-inoculation (p.i.). Unlike other immunopathology models, both pro- and anti-inflammatory cytokines can play dual roles in TMEV-IDD. Pro-inflammatory cytokines play beneficial roles in viral clearance while they are also detrimental in immune-mediated demyelination. Anti-inflammatory cytokines suppress not only protective anti-viral immune responses but also detrimental autoreactive immune responses. Conversely, in C3H mice, TMEV infection induces a non-CNS disease, myocarditis, with three distinctive phases: phase I, viral pathology with interferon and chemokine responses; phase II, immunopathology mediated by acquired immune responses; and phase III, cardiac fibrosis. Although the exact mechanism(s) by which a single virus, TMEV, induces these different diseases in different organs is unclear, our bioinformatics approaches, especially principal component analysis (PCA) of transcriptome data, allow us to identify the key factors contributing to organ-specific immunopathology. The PCA demonstrated that in vitro infection of a cardiomyocyte cell line reproduced the transcriptome profile of phase I in TMEV-induced myocarditis; distinct interferon/chemokine-related responses were induced in vitro in TMEV-infected cardiomyocytes, but not in infected neuronal cells. In addition, the PCA of the in vivo CNS transcriptome data showed that decreased lymphatic marker expressions were weakly associated with inflammation in TMEV infection. Here, dysfunction of lymphatic vessels is shown to potentially contribute to immunopathology by delaying the clearance of cytokines and immune cells from the inflammatory site, although this can also confine the virus at these sites, preventing virus spread via lymphatic vessels. On the other hand, in the heart, dysfunction of lymphatics was associated with reduced lymphatic muscle contractility provoked by pro-inflammatory cytokines. Therefore, TMEV infection may induce different patterns of cytokine expressions as well as lymphatic vessel dysfunction by rather different mechanisms between the CNS and heart, which might explain observed patterns of organ-specific immunopathology.
Collapse
Affiliation(s)
- Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan.,Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Eiichiro Kawai
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan.,Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Nicholas E Martinez
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mahmoud Al-Kofahi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - J Winny Yun
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Urska Cvek
- Department of Computer Science, Louisiana State University Shreveport, Shreveport, LA, United States
| | - Marjan Trutschl
- Department of Computer Science, Louisiana State University Shreveport, Shreveport, LA, United States
| | - J Steven Alexander
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan.,Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
2
|
Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I. Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res 2018; 96:1021-1042. [PMID: 29446144 DOI: 10.1002/jnr.24224] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a chronic, progressive disorder of the central nervous system (CNS) that affects more than two million people worldwide. Several animal models resemble MS pathology; the most employed are experimental autoimmune encephalomyelitis (EAE) and toxin- and/or virus-induced demyelination. In this review we will summarize our knowledge on the utility of different animal models in MS research. Although animal models cannot replicate the complexity and heterogeneity of the MS pathology, they have proved to be useful for the development of several drugs approved for treatment of MS patients. This review focuses on EAE because it represents both clinical and pathological features of MS. During the past decades, EAE has been effective in illuminating various pathological processes that occur during MS, including inflammation, CNS penetration, demyelination, axonopathy, and neuron loss mediated by immune cells.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | | | - Sanja Pekovic
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Organ-specific protective role of NKT cells in virus-induced inflammatory demyelination and myocarditis depends on mouse strain. J Neuroimmunol 2015; 278:174-84. [PMID: 25434008 DOI: 10.1016/j.jneuroim.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 02/08/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) can induce demyelination or myocarditis in susceptible mouse strains. A deficiency of NKT cells exacerbated TMEV-induced demyelinating disease (TMEV-IDD) in SJL/J and BALB/c mice. In C57BL/6 background, however, NKT-cell-deficient Jα18 KO mice remained as resistant to TMEV-IDD as wild-type mice. Echocardiography and histology showed that Jα18 KO mice developed more severe myocarditis (greater T cell infiltration and fibrosis) than wild-type mice, suggesting a protective role of NKT cells in myocarditis in C57BL/6 mice. Jα18 KO mice had higher cardiac viral RNA and anti-viral antibody titers, but had lower lymphoproliferation and IL-4 and IL-10 production.
Collapse
|
4
|
Regulation of an autoimmune model for multiple sclerosis in Th2-biased GATA3 transgenic mice. Int J Mol Sci 2014; 15:1700-18. [PMID: 24463292 PMCID: PMC3958817 DOI: 10.3390/ijms15021700] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/11/2014] [Accepted: 01/14/2014] [Indexed: 02/05/2023] Open
Abstract
T helper (Th)2 cells have been proposed to play a neuroprotective role in multiple sclerosis (MS). This is mainly based on “loss-of-function” studies in an animal model for MS, experimental autoimmune encephalomyelitis (EAE), using blocking antibodies against Th2 related cytokines, and knockout mice lacking Th2-related molecules. We tested whether an increase of Th2 responses (“gain-of-function” approach) could alter EAE, the approach of novel GATA binding protein 3 (GATA3)-transgenic (tg) mice that overexpress GATA3, a transcription factor required for Th2 differentiation. In EAE induced with myelin oligodendrocyte glycoprotein (MOG)35–55 peptide, GATA3-tg mice had a significantly delayed onset of disease and a less severe maximum clinical score, compared with wild-type C57BL/6 mice. Histologically, GATA3-tg mice had decreased levels of meningitis and demyelination in the spinal cord, and anti-inflammatory cytokine profiles immunologically, however both groups developed similar levels of MOG-specific lymphoproliferative responses. During the early stage, we detected higher levels of interleukin (IL)-4 and IL-10, with MOG and mitogen stimulation of regional lymph node cells in GATA3-tg mice. During the late stage, only mitogen stimulation induced higher IL-4 and lower interferon-γ and IL-17 production in GATA3-tg mice. These results suggest that a preexisting bias toward a Th2 immune response may reduce the severity of inflammatory demyelinating diseases, including MS.
Collapse
|
5
|
Plantone D, Marti A, Frisullo G, Iorio R, Damato V, Nociti V, Patanella AK, Bianco A, Mirabella M, Batocchi AP. Circulating CD56dim NK cells expressing perforin are increased in progressive multiple sclerosis. J Neuroimmunol 2013; 265:124-7. [PMID: 24157130 DOI: 10.1016/j.jneuroim.2013.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/01/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
In this study we evaluated the percentages of CD3(-)CD56(bright), CD3(-)CD56(dim), CD3(-)CD56(bright)perforin(+) and CD3(-)CD56(dim)perforin(+) Natural Killer (NK) cells in peripheral blood from untreated secondary progressive (SP) and primary progressive (PP) multiple sclerosis (MS) patients and age and sex matched healthy subjects. Both PPMS patients and SPMS patients showed increased percentages of circulating CD3(-)CD56(dim)perforin(+) NK cells than healthy subjects. The increased percentage of CD3(-)CD56(dim) NK cells expressing perforin in patients affected by the progressive forms of MS suggests a possible role of this NK cell subpopulation in the pathogenesis of the disease.
Collapse
|
7
|
Abstract
The GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) causes an acute fatal polioencephalomyelitis in mice. Infection of susceptible mice with the DA strain of TMEV results in an acute polioencephalomyelitis followed by chronic immune-mediated demyelination with virus persistence in the central nervous system (CNS); DA virus infection is used as an animal model for multiple sclerosis. CD1d-restricted natural killer T (NKT) cells can contribute to viral clearance and regulation of autoimmune responses. To investigate the role of CD1d in TMEV infection, we first infected CD1d-deficient mice (CD1(-/-)) and wild-type BALB/c mice with GDVII virus. Wild-type mice were more resistant to virus than CD1(-/-) mice (50% lethal dose titers: wild-type mice, 10 PFU; CD1(-/-) mice, 1.6 PFU). Wild-type mice had fewer viral antigen-positive cells with greater inflammation in the CNS than CD1(-/-) mice. Second, an analysis of DA virus infection in CD1(-/-) mice was conducted. Although both wild-type and CD1(-/-) mice had similar clinical signs during the first 2 weeks after infection, CD1(-/-) mice had an increase in neurological deficits over those observed in wild-type mice at 3 to 5 weeks after infection. Although wild-type mice had no demyelination, 20 and 60% of CD1(-/-) mice developed demyelination at 3 and 5 weeks after infection, respectively. TMEV-specific lymphoproliferative responses, interleukin-4 (IL-4) production, and IL-4/gamma interferon ratios were higher in CD1(-/-) mice than in wild-type mice. Thus, CD1d-restricted NKT cells may play a protective role in TMEV-induced neurological disease by alteration of the cytokine profile and virus-specific immune responses.
Collapse
|