1
|
Bulut E, Johansen PM, Elbualy A, Kalman C, Mayer R, Kato N, Salmeron de Toledo Aguiar R, Pilitsis JG. How Long Does Deep Brain Stimulation Give Patients Benefit? Neuromodulation 2024:S1094-7159(24)00128-4. [PMID: 39001725 DOI: 10.1016/j.neurom.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 07/15/2024]
Abstract
INTRODUCTION One of the most common questions patients ask when they are contemplating deep brain stimulation (DBS) is how long it will last. To guide physicians in answering this query, we performed a scoping review to assess the current state of the literature and to identify the gaps that need to be addressed. MATERIALS AND METHODS The authors performed a MEDLINE search inclusive of articles from January 1987 (advent of DBS literature) to June 2023 including human and modeling studies written in English. For longevity of therapy data, only studies with a mean follow-up of ≥three years were included. Using the Rayyan platform, two reviewers (JP and RM) performed a title screen. Of the 734 articles, 205 were selected by title screen and 109 from abstract review. Ultimately, a total of 122 articles were reviewed. The research questions we explored were 1) how long can the different components of the DBS system maintain functionality? and 2) how long can DBS remain efficacious in treating Parkinson's disease (PD), essential tremor (ET), dystonia, and other disorders? RESULTS We showed that patients with PD, ET, and dystonia maintain a considerable long-term benefit in motor scores seven to ten years after implant, although the percentage improvement decreases over time. Stimulation off scores in PD and ET show worsening, consistent with disease progression. Battery life varies by the disease treated and the programming settings used. There remains a paucity of literature after ten years, and the impact of new device technology has not been classified to date. CONCLUSION We reviewed existing data on DBS longevity. Overall, outcomes data after ten years of therapy are substantially limited in the current literature. We recommend that physicians who have data for patients with DBS exceeding this duration publish their results.
Collapse
Affiliation(s)
- Esin Bulut
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - P Mitchell Johansen
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Alya Elbualy
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Cheyenne Kalman
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Ryan Mayer
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Nicholas Kato
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Julie G Pilitsis
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Philipson J, Naesstrom M, Johansson JD, Hariz M, Blomstedt P, Jahanshahi M. Deep brain stimulation in the ALIC-BNST region targeting the bed nucleus of stria terminalis in patients with obsessive-compulsive disorder: effects on cognition after 12 months. Acta Neurochir (Wien) 2022; 165:1201-1214. [PMID: 36056244 PMCID: PMC10140080 DOI: 10.1007/s00701-022-05351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study was to evaluate cognitive effects 12 months after Deep Brain Stimulation (DBS) of the Bed Nucleus of Stria Terminalis (BNST) in patients with refractory Obsessive-Compulsive Disorder (OCD). METHODS Eight patients (5 female; mean ± SD age 36 ± 15) with OCD were included. A neuropsychological test battery covering verbal and spatial episodic memory, executive function, and attention was administered preoperatively and 12 months after surgery. Medical records were used as a source for descriptive data to probe for any changes not covered by standardized checklists and the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), the primary outcome measure. RESULTS At 12 months, seven patients showed response to DBS: three were full responders (i.e., Y-BOCS ≥ 35% improvement), and four were partial responders (Y-BOCS 25-34% improvement). Relative to baseline, there was a slight decline on visuo-spatial learning (p = 0.027), and improved performance on the Color-Word Interference inhibition/switching subtest (p = 0.041), suggesting improvement in cognitive flexibility. CONCLUSIONS DBS in the BNST for treatment refractory OCD generates very few adverse cognitive effects and improves cognitive flexibility after 12 months of stimulation. The improvement in Y-BOCS and the absence of major cognitive side effects support the BNST as a potential target for DBS in severe OCD.
Collapse
Affiliation(s)
- Johanna Philipson
- Department of Clinical Sciences, Neuroscience, Umeå University, 901 85, Umeå, Sweden.
| | - Matilda Naesstrom
- Department of Clinical Sciences, Division of Psychiatry, Umeå University, Umeå, Sweden
| | | | - Marwan Hariz
- Department of Clinical Sciences, Neuroscience, Umeå University, 901 85, Umeå, Sweden.,Unit of Functional Neurosurgery, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 33 Queen Square, London, UK
| | - Patric Blomstedt
- Department of Clinical Sciences, Neuroscience, Umeå University, 901 85, Umeå, Sweden
| | - Marjan Jahanshahi
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 33 Queen Square, London, UK
| |
Collapse
|
3
|
Mar-Barrutia L, Real E, Segalás C, Bertolín S, Menchón JM, Alonso P. Deep brain stimulation for obsessive-compulsive disorder: A systematic review of worldwide experience after 20 years. World J Psychiatry 2021; 11:659-680. [PMID: 34631467 PMCID: PMC8474989 DOI: 10.5498/wjp.v11.i9.659] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Twenty years after its first use in a patient with obsessive-compulsive disorder (OCD), the results confirm that deep brain stimulation (DBS) is a promising therapy for patients with severe and resistant forms of the disorder. Nevertheless, many unknowns remain, including the optimal anatomical targets, the best stimulation parameters, the long-term (LT) effects of the therapy, and the clinical or biological factors associated with response. This systematic review of the articles published to date on DBS for OCD assesses the short and LT efficacy of the therapy and seeks to identify predictors of response.
AIM To summarize the existing knowledge on the efficacy and tolerability of DBS in treatment-resistant OCD.
METHODS A comprehensive search was conducted in the PubMed, Cochrane, Scopus, and ClinicalTrials.gov databases from inception to December 31, 2020, using the following strategy: “(Obsessive-compulsive disorder OR OCD) AND (deep brain stimulation OR DBS).” Clinical trials and observational studies published in English and evaluating the effectiveness of DBS for OCD in humans were included and screened for relevant information using a standardized collection tool. The inclusion criteria were as follows: a main diagnosis of OCD, DBS conducted for therapeutic purposes and variation in symptoms of OCD measured by the Yale-Brown Obsessive-Compulsive scale (Y-BOCS) as primary outcome. Data were analyzed with descriptive statistics.
RESULTS Forty articles identified by the search strategy met the eligibility criteria. Applying a follow-up threshold of 36 mo, 29 studies (with 230 patients) provided information on short-term (ST) response to DBS in, while 11 (with 155 patients) reported results on LT response. Mean follow-up period was 18.5 ± 8.0 mo for the ST studies and 63.7 ± 20.7 mo for the LT studies. Overall, the percentage of reduction in Y-BOCS scores was similar in ST (47.4%) and LT responses (47.2%) to DBS, but more patients in the LT reports met the criteria for response (defined as a reduction in Y-BOCS scores > 35%: ST, 60.6% vs LT, 70.7%). According to the results, the response in the first year predicts the extent to which an OCD patient will benefit from DBS, since the maximum symptom reduction was achieved in most responders in the first 12-14 mo after implantation. Reports indicate a consistent tendency for this early improvement to be maintained to the mid-term for most patients; but it is still controversial whether this improvement persists, increases or decreases in the long term. Three different patterns of LT response emerged from the analysis: 49.5% of patients had good and sustained response to DBS, 26.6% were non responders, and 22.5% were partial responders, who might improve at some point but experience relapses during follow-up. A significant improvement in depressive symptoms and global functionality was observed in most studies, usually (although not always) in parallel with an improvement in obsessive symptoms. Most adverse effects of DBS were mild and transient and improved after adjusting stimulation parameters; however, some severe adverse events including intracranial hemorrhages and infections were also described. Hypomania was the most frequently reported psychiatric side effect. The relationship between DBS and suicide risk is still controversial and requires further study. Finally, to date, no clear clinical or biological predictors of response can be established, probably because of the differences between studies in terms of the neuroanatomical targets and stimulation protocols assessed.
CONCLUSION The present review confirms that DBS is a promising therapy for patients with severe resistant OCD, providing both ST and LT evidence of efficacy.
Collapse
Affiliation(s)
- Lorea Mar-Barrutia
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Cinto Segalás
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Sara Bertolín
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| |
Collapse
|
4
|
Acevedo N, Bosanac P, Pikoos T, Rossell S, Castle D. Therapeutic Neurostimulation in Obsessive-Compulsive and Related Disorders: A Systematic Review. Brain Sci 2021; 11:brainsci11070948. [PMID: 34356182 PMCID: PMC8307974 DOI: 10.3390/brainsci11070948] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/16/2023] Open
Abstract
Invasive and noninvasive neurostimulation therapies for obsessive-compulsive and related disorders (OCRD) were systematically reviewed with the aim of assessing clinical characteristics, methodologies, neuroanatomical substrates, and varied stimulation parameters. Previous reviews have focused on a narrow scope, statistical rather than clinical significance, grouped together heterogenous protocols, and proposed inconclusive outcomes and directions. Herein, a comprehensive and transdiagnostic evaluation of all clinically relevant determinants is presented with translational clinical recommendations and novel response rates. Electroconvulsive therapy (ECT) studies were limited in number and quality but demonstrated greater efficacy than previously identified. Targeting the pre-SMA/SMA is recommended for transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). TMS yielded superior outcomes, although polarity findings were conflicting, and refinement of frontal/cognitive control protocols may optimize outcomes. For both techniques, standardization of polarity, more treatment sessions (>20), and targeting multiple structures are encouraged. A deep brain stimulation (DBS) 'sweet spot' of the striatum for OCD was proposed, and CBT is strongly encouraged. Tourette's patients showed less variance and reliance on treatment optimization. Several DBS targets achieved consistent, rapid, and sustained clinical response. Analysis of fiber connectivity, as opposed to precise neural regions, should be implemented for target selection. Standardization of protocols is necessary to achieve translational outcomes.
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- Correspondence:
| | - Peter Bosanac
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toni Pikoos
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
| | - David Castle
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Addiction and Mental Health, 252 College Street, Toronto, ON M5T 1R7, Canada
| |
Collapse
|
5
|
Bernardes ET, Saraiva LC, e Souza MDM, Hoexter MQ, Chacon P, Requena G, Miguel EC, Shavitt RG, Polanczyk GV, Cappi C, Batistuzzo MC. Cognitive performance in children and adolescents at high-risk for obsessive-compulsive disorder. BMC Psychiatry 2020; 20:380. [PMID: 32690046 PMCID: PMC7370498 DOI: 10.1186/s12888-020-02751-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/23/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cognitive performance has been studied in adults with obsessive-compulsive symptoms (OCS) and in adult relatives of patients with obsessive-compulsive disorder (OCD) Meanwhile, few studies have been conducted with children under the same conditions. This study compared the neurocognitive domains previously associated with dysfunction in OCD, especially visuoconstructive ability, visuospatial memory, executive functions, and intelligence, in children and adolescents at high risk (HR) for OCD (n = 18) and non-OCD controls (NOC) (n = 31). METHODS For the HR group, we considered the first-degree relatives of patients with OCD that present OCS, but do not meet diagnostic criteria for OCD. Psychiatric diagnosis was assessed by experienced clinicians using the Structured Clinical Interview for DSM-IV and OCS severity was measured by the Yale-Brown Obsessive-Compulsive Scale. Neurocognitive assessment was performed with a comprehensive neuropsychological battery. Performance on the cognitive domains was compared between groups using Multivariate Analysis of Variance, whereas performance on the neuropsychological variables was compared between groups using independent t-tests in a cognitive subdomain analysis. RESULTS The cognitive domain analysis revealed a trend towards significance for impairments in the motor and processing speed domain (p = 0.019; F = 3.12) in the HR group. Moreover, the cognitive subdomain analysis identified a statistically significant underperformance in spatial working memory in the HR group when compared to the NOC group (p = 0.005; t = - 2.94), and a trend towards significance for impairments in non-verbal memory and visuoconstructive tasks in the HR group. CONCLUSIONS Our results suggest impairments in spatial working memory and motor and processing speed in a non-clinical sample of HR participants. Considering the preliminary nature of our findings, further studies investigating these neurocognitive domains as potential predictors of pediatric OCD are warranted.
Collapse
Affiliation(s)
- Elisa Teixeira Bernardes
- Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr Ovidio Pires de Campos, 875, Sao Paulo, SP, Brazil.
| | - Leonardo Cardoso Saraiva
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr Ovidio Pires de Campos, 875, Sao Paulo, SP Brazil
| | - Marina de Marco e Souza
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr Ovidio Pires de Campos, 875, Sao Paulo, SP Brazil
| | - Marcelo Queiroz Hoexter
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr Ovidio Pires de Campos, 875, Sao Paulo, SP Brazil
| | - Priscila Chacon
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr Ovidio Pires de Campos, 875, Sao Paulo, SP Brazil
| | - Guaraci Requena
- grid.12799.340000 0000 8338 6359Instituto de Ciencias Exatas e Tecnologicas da Universidade Federal de Vicosa, Viçosa, Brazil
| | - Euripedes Constantino Miguel
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr Ovidio Pires de Campos, 875, Sao Paulo, SP Brazil
| | - Roseli Gedanke Shavitt
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr Ovidio Pires de Campos, 875, Sao Paulo, SP Brazil
| | - Guilherme Vanoni Polanczyk
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr Ovidio Pires de Campos, 875, Sao Paulo, SP Brazil
| | - Carolina Cappi
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr Ovidio Pires de Campos, 875, Sao Paulo, SP Brazil
| | - Marcelo Camargo Batistuzzo
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, R. Dr Ovidio Pires de Campos, 875, Sao Paulo, SP Brazil ,grid.412529.90000 0001 2149 6891Curso de Psicologia, Faculdade de Ciências Humanas e da Saúde, Pontifícia Universidade Católica de São Paulo, Sao Paulo, SP Brazil
| |
Collapse
|