1
|
Ghorbel D, Hadrich I, Neji S, Trabelsi H, Belaaj H, Sellami H, Cheikhrouhou F, Makni F, Ayadi A. Detection of virulence factors and antifungal susceptibility of human and avian Aspergillusflavus isolates. J Mycol Med 2019; 29:292-302. [PMID: 31570304 DOI: 10.1016/j.mycmed.2019.100900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/07/2019] [Accepted: 09/08/2019] [Indexed: 10/26/2022]
Abstract
Aspergillusflavus is the second leading cause of invasive and non-invasive aspergillosis. Secretion of hydrolytic enzymes is considered as a virulence factor in this species. Our work aimed to study in vitro production of some virulence factors, to evaluate the biofilm production against human and avian A. flavus isolates and to investigate the antifungal susceptibility agents. Hydrolytic enzymes, biofilm production and molecular typing were studied for 62 human and 36 avian A. flavus isolates by specific solid media and six microsatellite markers. The susceptibility to antifungal agents was evaluated for 37 human isolates. All human and avian A. flavus isolates showed positive activities of extracellular hydrolase: phospholipase, protease and hemolysin. A positive elastase activity was seen in 64.51% of human A. flavus isolates and 86.1% of avian A. flavus isolates. All A. flavus in these two populations formed biofilms. Statistical significant difference was observed for the mean phospholipase activities (P=0.025) and biofilm quantification (P=0.0001) between human and avian A. flavus isolates. The in vitro susceptibility results showed a resistance in 83.7%, 81.08% and 16.21% of A. flavus isolates respectively to amphotericin B, itraconazole and posaconazole. No association was noted between all virulence factors and the genotypes of human and avian isolates. Our study allowed us to show that human strains have a higher production of extracellular hydrolases and biofilm then avian strains. These virulence factors appear to act synergistically to contribute to the virulence of A. flavus strains. Moreover, significant correlation between virulence patterns and antifungal susceptibility profiles was observed.
Collapse
Affiliation(s)
- D Ghorbel
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, university of Sfax, Tunisia.
| | - I Hadrich
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, university of Sfax, Tunisia.
| | - S Neji
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, university of Sfax, Tunisia.
| | - H Trabelsi
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, university of Sfax, Tunisia.
| | - H Belaaj
- Hematology department, UH Hedi Chaker, Sfax, Tunisia.
| | - H Sellami
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, university of Sfax, Tunisia.
| | - F Cheikhrouhou
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, university of Sfax, Tunisia.
| | - F Makni
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, university of Sfax, Tunisia.
| | - A Ayadi
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, university of Sfax, Tunisia.
| |
Collapse
|
2
|
Escobar N, Valdes ID, Keizer EM, Ordonez SR, Ohm RA, Wösten HAB, de Cock H. Expression profile analysis reveals that Aspergillus fumigatus but not Aspergillus niger makes type II epithelial lung cells less immunological alert. BMC Genomics 2018; 19:534. [PMID: 30005605 PMCID: PMC6044037 DOI: 10.1186/s12864-018-4895-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
Background Aspergillus fumigatus is the main causative agent of aspergillosis. Infections rarely occur in immunocompetent individuals, indicating efficient clearance of conidia by pulmonary defense mechanisms. Other aspergilli like Aspergillus niger also cause infections but to a much lesser extent. Our previous studies showed that A. fumigatus and A. niger have different behavior in the presence of type II alveolar A549 epithelial cells. A. fumigatus conidia are more efficiently internalized by these cells and germination is delayed when compared to A. niger. In addition, hyphae that have escaped the epithelial cells grow parallel to the epithelium, while A. niger grows away from this cell layer. Results Here it is shown that global gene expression of A. fumigatus and A. niger is markedly different upon contact with A549 cells. A total of 545 and 473 genes of A. fumigatus and A. niger, respectively, were differentially expressed when compared to growth in the absence of A549 cells. Notably, only 53 genes (approximately 10%) were shared in these gene sets. The different response was also illustrated by the fact that only 4 out of 75 GO terms were shared that were enriched in the differentially expressed gene sets. The orthologues of A. fumigatus genes involved in hypoxia regulation and heat shock were also up-regulated in A. niger, whereas thioredoxin reductase and allergen genes were found up-regulated in A. fumigatus but down-regulated in A. niger. Infection with A. fumigatus resulted in only 62 up and 47 down-regulated genes in A549. These numbers were 17 and 34 in the case of A. niger. GO terms related with immune response were down-regulated upon exposure to A. fumigatus but not in the case of A. niger. This indicates that A. fumigatus reprograms A549 to be less immunologically alert. Conclusions Our dual transcriptomic analysis supports earlier observations of a marked difference in life style between A. fumigatus and A. niger when grown in the presence of type II epithelial cells. The results indicate important differences in gene expression, amongst others down regulation of immune response genes in lung epithelial cells by A. fumigatus but not by A niger. Electronic supplementary material The online version of this article (10.1186/s12864-018-4895-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Escobar
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ivan D Valdes
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Esther M Keizer
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Soledad R Ordonez
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Robin A Ohm
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hans de Cock
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Functional Elucidation of Nemopilema nomurai and Cyanea nozakii Nematocyst Venoms' Lytic Activity Using Mass Spectrometry and Zymography. Toxins (Basel) 2017; 9:toxins9020047. [PMID: 28134758 PMCID: PMC5331427 DOI: 10.3390/toxins9020047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
Background: Medusozoans utilize explosively discharging penetrant nematocysts to inject venom into prey. These venoms are composed of highly complex proteins and peptides with extensive bioactivities, as observed in vitro. Diverse enzymatic toxins have been putatively identified in the venom of jellyfish, Nemopilema nomurai and Cyanea nozakii, through examination of their proteomes and transcriptomes. However, functional examination of putative enzymatic components identified in proteomic approaches to elucidate potential bioactivities is critically needed. Methods: In this study, enzymatic toxins were functionally identified using a combined approach consisting of in gel zymography and liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential roles of metalloproteinases and lipases in hemolytic activity were explored using specific inhibitors. Results: Zymography indicated that nematocyst venom possessed protease-, lipase- and hyaluronidase-class activities. Further, proteomic approaches using LC-MS/MS indicated sequence homology of proteolytic bands observed in zymography to extant zinc metalloproteinase-disintegrins and astacin metalloproteinases. Moreover, pre-incubation of the metalloproteinase inhibitor batimastat with N. nomurai nematocyst venom resulted in an approximate 62% reduction of hemolysis compared to venom exposed sheep erythrocytes, suggesting that metalloproteinases contribute to hemolytic activity. Additionally, species within the molecular mass range of 14–18 kDa exhibited both egg yolk and erythrocyte lytic activities in gel overlay assays. Conclusion: For the first time, our findings demonstrate the contribution of jellyfish venom metalloproteinase and suggest the involvement of lipase species to hemolytic activity. Investigations of this relationship will facilitate a better understanding of the constituents and toxicity of jellyfish venom.
Collapse
|
4
|
Alshareef F, Robson GD. Genetic and virulence variation in an environmental population of the opportunistic pathogen Aspergillus fumigatus. MICROBIOLOGY-SGM 2014; 160:742-751. [PMID: 24464798 DOI: 10.1099/mic.0.072520-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Environmental populations of the opportunistic pathogen Aspergillus fumigatus have been shown to be genotypically diverse and to contain a range of isolates with varying pathogenic potential. In this study, we combined two RAPD primers to investigate the genetic diversity of environmental isolates from Manchester collected monthly over 1 year alongside Dublin environmental isolates and clinical isolates from patients. RAPD analysis revealed a diverse genotype, but with three major clinical isolate clusters. When the pathogenicity of clinical and Dublin isolates was compared with a random selection of Manchester isolates in a Galleria mellonella larvae model, as a group, clinical isolates were significantly more pathogenic than environmental isolates. Moreover, when relative pathogenicity of individual isolates was compared, clinical isolates were the most pathogenic, Dublin isolates were the least pathogenic and Manchester isolates showed a range in pathogenicity. Overall, this suggests that the environmental population is genetically diverse, displaying a range in pathogenicity, and that the most pathogenic strains from the environment are selected during patient infection.
Collapse
Affiliation(s)
- Fadwa Alshareef
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M16 8QW, UK
| | - Geoffrey D Robson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M16 8QW, UK
| |
Collapse
|
5
|
Aboul-Nasr MB, Zohri ANA, Amer EM. Enzymatic and toxigenic ability of opportunistic fungi contaminating intensive care units and operation rooms at Assiut University Hospitals, Egypt. SPRINGERPLUS 2013; 2:347. [PMID: 23961411 PMCID: PMC3733072 DOI: 10.1186/2193-1801-2-347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/26/2013] [Indexed: 11/10/2022]
Abstract
Total of 110 isolates belonging to 8 fungal species collected from intensive care units (ICUs) and operation rooms (ORs) at Assiut University hospitals were examined for their ability to produce some extracellular enzymes and mycotoxins which are considered as important factors involved in for fungal pathogenicity. The results revealed that 73, 92 and 78 out of the 110 tested isolates produced protease, lipase and urease respectively; meanwhile, 77 of the tested isolates exhibited some hemolytic activities. Chromatographic analysis (TLC) of the crude extract of the fungal isolates tested revealed that 79 isolates of them had the ability to produce at least one of these mycotoxic compounds (aflatoxins B1, B2, G1, gliotoxin, fumigillin, T-2, zearalenone, roridin A & E, verrucarin A & J, trichoveroids, satratoxin H & E). These results demonstrate that the opportunistic fungal species isolated from (ICUs) and (ORs) and tested exhibited some enzymatic and mycotoxic ability which are the most effective virulence factors contributing to fungal pathogenicity indicating that the management of infection control unit at Assiut University hospitals must be aware of not only bacterial but also fungal contamination.
Collapse
|
6
|
Disruption of the phospholipase D gene attenuates the virulence of Aspergillus fumigatus. Infect Immun 2011; 80:429-40. [PMID: 22083709 DOI: 10.1128/iai.05830-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne fungal pathogen that induces serious infections in immunocompromised patients. Phospholipases are key enzymes in pathogenic fungi that cleave host phospholipids, resulting in membrane destabilization and host cell penetration. However, knowledge of the impact of phospholipases on A. fumigatus virulence is rather limited. In this study, disruption of the pld gene encoding phospholipase D (PLD), an important member of the phospholipase protein family in A. fumigatus, was confirmed to significantly decrease both intracellular and extracellular PLD activity of A. fumigatus. The pld gene disruption did not alter conidial morphological characteristics, germination, growth, and biofilm formation but significantly suppressed the internalization of A. fumigatus into A549 epithelial cells without affecting conidial adhesion to epithelial cells. Importantly, the suppressed internalization was fully rescued in the presence of 100 μM phosphatidic acid, the PLD product. Indeed, complementation of pld restored the PLD activity and internalization capacity of A. fumigatus. Phagocytosis of A. fumigatus conidia by J774 macrophages was not affected by the absence of the pld gene. Pretreatment of conidia with 1-butanol and a specific PLD inhibitor decreased the internalization of A. fumigatus into A549 epithelial cells but had no effect on phagocytosis by J774 macrophages. Finally, loss of the pld gene attenuated the virulence of A. fumigatus in mice immunosuppressed with hydrocortisone acetate but not with cyclophosphamide. These data suggest that PLD of A. fumigatus regulates its internalization into lung epithelial cells and may represent an important virulence factor for A. fumigatus infection.
Collapse
|
7
|
Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl Biochem Biotechnol 2011; 164:991-1022. [PMID: 21302142 DOI: 10.1007/s12010-011-9190-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
Significant studies on phospholipases optimization, characterization, physiological role and industrial potential have been conducted worldwide. Some of them have been directed for biotechnological advances such as gene discovery and functional enhancement by protein engineering. Others reported phospholipases as virulence factor and major cause of pathophysiological effects. A general overview on phospholipase is needed for the identification of new reliable and efficient phospholipase, which would be potentially used in number of industrial and medical applications. Phospholipases catalyse the hydrolysis of one or more ester and phosphodiester bonds of glycerophospholipids. They vary in site of action on phospholipid which can be used industrially for modification/production of new phospholipids. Catalytically active phospholipase mainly use phosphatidylcholine as major substrate, but they can also show specificity with other phospholipids. Several accurate phospholipase assay methods are known, but a rapid and reliable method for high-throughput screening is still a challenge for efficient supply of superior phospholipases and their practical applications. Major application of phospholipase is in industries like oil refinery, health food manufacturing, dairy, cosmetics etc. All types of phospholipases can be involved as virulence factor. They can also be used as diagnostic markers for microbial infection. The importance of phospholipase in virulence is proven and inhibitors of the enzyme can be used as candidate for preventing the associated disease.
Collapse
|
8
|
Marfenina OE, Fomicheva GM, Vasilenko OV, Naumova EM, Kul’ko AB. Sporulation in saprotrophic and clinical strains of Aspergillus sydowii (Bain. & Sart.) Thom & Church under various environmental conditions. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710060056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 2010; 27:155-82. [PMID: 20974273 DOI: 10.1016/j.riam.2010.10.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/21/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic pathogen that causes 90% of invasive aspergillosis (IA) due to Aspergillus genus, with a 50-95% mortality rate. It has been postulated that certain virulence factors are characteristic of A. fumigatus, but the "non-classical" virulence factors seem to be highly variable. Overall, published studies have demonstrated that the virulence of this fungus is multifactorial, associated with its structure, its capacity for growth and adaptation to stress conditions, its mechanisms for evading the immune system and its ability to cause damage to the host. In this review we intend to give a general overview of the genes and molecules involved in the development of IA. The thermotolerance section focuses on five genes related with the capacity of the fungus to grow at temperatures above 30°C (thtA, cgrA, afpmt1, kre2/afmnt1, and hsp1/asp f 12). The following sections discuss molecules and genes related to interaction with the host and with the immune responses. These sections include β-glucan, α-glucan, chitin, galactomannan, galactomannoproteins (afmp1/asp f 17 and afmp2), hydrophobins (rodA/hyp1 and rodB), DHN-melanin, their respective synthases (fks1, rho1-4, ags1-3, chsA-G, och1-4, mnn9, van1, anp1, glfA, pksP/alb1, arp1, arp2, abr1, abr2, and ayg1), and modifying enzymes (gel1-7, bgt1, eng1, ecm33, afpigA, afpmt1-2, afpmt4, kre2/afmnt1, afmnt2-3, afcwh41 and pmi); several enzymes related to oxidative stress protection such as catalases (catA, cat1/catB, cat2/katG, catC, and catE), superoxide dismutases (sod1, sod2, sod3/asp f 6, and sod4), fatty acid oxygenases (ppoA-C), glutathione tranferases (gstA-E), and others (afyap1, skn7, and pes1); and efflux transporters (mdr1-4, atrF, abcA-E, and msfA-E). In addition, this review considers toxins and related genes, such as a diffusible toxic substance from conidia, gliotoxin (gliP and gliZ), mitogillin (res/mitF/asp f 1), hemolysin (aspHS), festuclavine and fumigaclavine A-C, fumitremorgin A-C, verruculogen, fumagillin, helvolic acid, aflatoxin B1 and G1, and laeA. Two sections cover genes and molecules related with nutrient uptake, signaling and metabolic regulations involved in virulence, including enzymes, such as serine proteases (alp/asp f 13, alp2, and asp f 18), metalloproteases (mep/asp f 5, mepB, and mep20), aspartic proteases (pep/asp f 10, pep2, and ctsD), dipeptidylpeptidases (dppIV and dppV), and phospholipases (plb1-3 and phospholipase C); siderophores and iron acquisition (sidA-G, sreA, ftrA, fetC, mirB-C, and amcA); zinc acquisition (zrfA-H, zafA, and pacC); amino acid biosynthesis, nitrogen uptake, and cross-pathways control (areA, rhbA, mcsA, lysF, cpcA/gcn4p, and cpcC/gcn2p); general biosynthetic pathway (pyrG, hcsA, and pabaA), trehalose biosynthesis (tpsA and tpsB), and other regulation pathways such as those of the MAP kinases (sakA/hogA, mpkA-C, ste7, pbs2, mkk2, steC/ste11, bck1, ssk2, and sho1), G-proteins (gpaA, sfaD, and cpgA), cAMP-PKA signaling (acyA, gpaB, pkaC1, and pkaR), His kinases (fos1 and tcsB), Ca(2+) signaling (calA/cnaA, crzA, gprC and gprD), and Ras family (rasA, rasB, and rhbA), and others (ace2, medA, and srbA). Finally, we also comment on the effect of A. fumigatus allergens (Asp f 1-Asp f 34) on IA. The data gathered generate a complex puzzle, the pieces representing virulence factors or the different activities of the fungus, and these need to be arranged to obtain a comprehensive vision of the virulence of A. fumigatus. The most recent gene expression studies using DNA-microarrays may be help us to understand this complex virulence, and to detect targets to develop rapid diagnostic methods and new antifungal agents.
Collapse
|
10
|
In vitro antifungal activities of bis(alkylpyridinium)alkane compounds against pathogenic yeasts and molds. Antimicrob Agents Chemother 2010; 54:3233-40. [PMID: 20530227 DOI: 10.1128/aac.00231-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ten bis(alkylpyridinium)alkane compounds were tested for antifungal activity against 19 species (26 isolates) of yeasts and molds. We then determined the MICs and minimum fungicidal concentrations (MFCs) of four of the most active compounds (compounds 1, 4, 5, and 8) against 80 Candida and 20 cryptococcal isolates, in comparison with the MICs of amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, and caspofungin, using Clinical Laboratory and Standards Institutes broth microdulition M27-A3 (yeasts) or M38-A2 (filamentous fungi) susceptibility protocols. The compounds were more potent against Candida and Cryptococcus spp. (MIC range, 0.74 to 27.9 microg/ml) than molds (0.74 to 59.7 microg/ml). MICs against Exophiala were 0.37 to 5.9 microg/ml and as low as 1.48 microg/ml for Scedosporium but >or=25 microg/ml for zygomycetes, Aspergillus, and Fusarium spp. Compounds 1, 4, 5, and 8 exhibited good fungicidal activity against Candida and Cryptococcus, except for Candida parapsilosis (MICs of >44 mug/ml). Geometric mean (GM) MICs were similar to those of amphotericin B and lower than or comparable to fluconazole GM MICs but 10- to 100-fold greater than those for the other azoles. GM MICs against Candida glabrata were <1 microg/ml, significantly lower than fluconazole GM MICs (P<0.001) and similar to those of itraconazole, posaconazole, and voriconazole (GM MIC range of 0.4 to 1.23 microg/ml). The GM MIC of compound 4 against Candida guilliermondii was lower than that of fluconazole (1.69 microg/ml versus 7.48 microg/ml; P=0.012). MICs against Cryptococcus neoformans and Cryptococcus gattii were similar to those of fluconazole. The GM MIC of compound 4 was significantly higher for C. neoformans (3.83 mug/ml versus 1.81 microg/ml for C. gattii; P=0.015). This study has identified clinically relevant in vitro antifungal activities of novel bisalkypyridinium alkane compounds.
Collapse
|
11
|
Thrasher JD, Crawley S. The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes. Toxicol Ind Health 2009; 25:583-615. [DOI: 10.1177/0748233709348386] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nine types of biocontaminants in damp indoor environments from microbial growth are discussed: (1) indicator molds; (2) Gram negative and positive bacteria; (3) microbial particulates; (4) mycotoxins; (5) volatile organic compounds, both microbial (MVOCs) and non-microbial (VOCs); (6) proteins; (7) galactomannans; (8) 1-3-β-D-glucans (glucans) and (9) lipopolysaccharides (LPS — endotoxins). When mold species exceed those outdoors contamination is deduced. Gram negative bacterial endotoxins, LPS in indoor environments, synergize with mycotoxins. The gram positive Bacillus species, Actinomycetes (Streptomyces, Nocardia and Mycobacterium), produce exotoxins. The Actinomycetes are associated with hypersensitivity pneumonitis, lung and invasive infections. Mycobacterial mycobacterium infections not from M. tuberculosis are increasing in immunocompetent individuals. In animal models, LPS enhance the toxicity of roridin A, satratoxins G and aflatoxin B1 to damage the olfactory epithelium, tract and bulbs (roridin A, satratoxin G) and liver (aflatoxin B1). Aflatoxin B1 and probably trichothecenes are transported along the olfactory tract to the temporal lobe. Co-cultured Streptomyces californicus and Stachybotrys chartarum produce a cytotoxin similar to doxorubicin and actinomycin D (chemotherapeutic agents). Trichothecenes, aflatoxins, gliotoxin and other mycotoxins are found in dust, bulk samples, air and ventilation systems of infested buildings. Macrocyclic trichothecenes are present in airborne particles <2 μm. Trichothecenes and stachylysin are present in the sera of individuals exposed to S. chartarum in contaminated indoor environments. Haemolysins are produced by S. chartarum, Memnoniella echinata and several species of Aspergillus and Penicillium. Galactomannans, glucans and LPS are upper and lower respiratory tract irritants. Gliotoxin, an immunosuppressive mycotoxin, was identified in the lung secretions and sera of cancer patients with aspergillosis produced by A. fumigatus, A. terreus, A. niger and A. flavus.
Collapse
|
12
|
Alp S, Arikan S. Investigation of extracellular elastase, acid proteinase and phospholipase activities as putative virulence factors in clinical isolates of Aspergillus species. J Basic Microbiol 2008; 48:331-7. [PMID: 18759239 DOI: 10.1002/jobm.200700349] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the production of extracellular elastase, acid proteinase and phospholipase enzyme activities in clinical isolates of Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger and any possible correlation between the existence of these enzymes and development of invasive aspergillosis. A total of 73 strains (45 A. fumigatus, 23 A. flavus, 5 A. niger) isolated from patients with invasive aspergillosis (n = 55), superficial aspergillosis (n = 5), allergic bronchopulmonary aspergillosis (n = 1), and from those colonized with Aspergillus (n = 12) were included in the study. The enzymatic activities were tested on solid media supplemented with the corresponding substrates. Elastase activity was detected in 95.6, 82.6, and 0% of A. fumigatus, A. flavus, and A. niger isolates, respectively. Acid proteinase activity was detected only for A. fumigatus and in 20 of 45 isolates belonging to this species. Phospholipase activity was present in all strains of A. fumigatus and A. niger but in none of the isolates of A. flavus. No statistical correlation could be established between the existence of elastase or acid proteinase activity and development of invasive disease (p > 0.05). While high phospholipase production was found to be associated with development of invasive aspergillosis (p < 0.01), not all isolates that caused invasive diseases showed high phospholipase activities.
Collapse
Affiliation(s)
- Sehnaz Alp
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | | |
Collapse
|
13
|
Souza TFD, Scroferneker ML, Costa JMD, Carissimi M, Corbellini VA. Secretion of five extracellular enzymes by strains of chromoblastomycosis agents. Rev Inst Med Trop Sao Paulo 2008; 50:269-72. [DOI: 10.1590/s0036-46652008000500004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 09/01/2008] [Indexed: 01/12/2023] Open
Abstract
The gelatinase, urease, lipase, phospholipase and DNase activities of 11 chromoblastomycosis agents constituted by strains of Fonsecaea pedrosoi, F. compacta, Phialophora verrucosa, Cladosporium carrionii, Cladophialophora bantiana and Exophiala jeanselmei were analyzed and compared. All strains presented urease, gelatinase and lipase activity. Phospholipase activity was detected only on five of six strains of F. pedrosoi. DNase activity was not detected on the strains studied. Our results indicate that only phospholipase production, induced by egg yolk substrate, was useful for the differentiation of the taxonomically related species studied, based on their enzymatic profile.
Collapse
Affiliation(s)
| | - Maria Lúcia Scroferneker
- Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
14
|
Ng CKL, Singhal V, Widmer F, Wright LC, Sorrell TC, Jolliffe KA. Synthesis, antifungal and haemolytic activity of a series of bis(pyridinium)alkanes. Bioorg Med Chem 2007; 15:3422-9. [PMID: 17383187 DOI: 10.1016/j.bmc.2007.03.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/20/2007] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
A series of bis(pyridinium)alkanes have been prepared and their antifungal activity, haemolytic activity and ability to inhibit fungal phospholipase B1 have been investigated, together with those of the commercially available antiseptics octenidine and dequalinium. Removal of the amino substituents from the pyridinium rings resulted in a significant decrease in antifungal activity. However, shortening or removing the alkyl chains attached to the amino groups had little effect on antifungal activity and significantly reduced haemolytic activity. Only octenidine was a strong inhibitor of fungal phospholipase B1.
Collapse
Affiliation(s)
- Clarissa K L Ng
- School of Chemistry, The University of Sydney, 2006 NSW, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Köhler GA, Brenot A, Haas-Stapleton E, Agabian N, Deva R, Nigam S. Phospholipase A2 and phospholipase B activities in fungi. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1761:1391-9. [PMID: 17081801 PMCID: PMC2077850 DOI: 10.1016/j.bbalip.2006.09.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
As saprophytes or disease causing microorganisms, fungi acquire nutrients from dead organic material or living host organisms. Lipids as structural components of cell membranes and storage compartments play an important role as energy-rich food source. In recent years, it also has become clear that lipids have a wide range of bioactive properties including signal transduction and cell to cell communication. Thus, it is not surprising that fungi possess a broad range of hydrolytic enzymes that attack neutral lipids and phospholipids. Especially during infection of a mammalian host, phospholipase A(2) (PLA(2)) enzymes released by fungi could play important roles not only for nutrient acquisition and tissue invasion, but for intricate modulation of the host's immune response. Sequencing of fungal genomes has revealed a wide range of genes encoding PLA(2) activities in fungi. We are just beginning to become aware of the significance these enzymes could have for the fungal cells and their interaction with the host.
Collapse
Affiliation(s)
- Gerwald A. Köhler
- Department of Cell and Tissue Biology, University of California, San Francisco, U.S.A
| | - Audrey Brenot
- Department of Cell and Tissue Biology, University of California, San Francisco, U.S.A
| | - Eric Haas-Stapleton
- Department of Cell and Tissue Biology, University of California, San Francisco, U.S.A
| | - Nina Agabian
- Department of Cell and Tissue Biology, University of California, San Francisco, U.S.A
| | - Rupal Deva
- Eicosanoid Research Division and Center for Experimental Gynecology & Breast Research, Charité - Univ.-Klinikum Benjamin Franklin, D-12200 Berlin, Germany
| | - Santosh Nigam
- Eicosanoid Research Division and Center for Experimental Gynecology & Breast Research, Charité - Univ.-Klinikum Benjamin Franklin, D-12200 Berlin, Germany
| |
Collapse
|
16
|
Tuckwell D, Lavens SE, Birch M. Two families of extracellular phospholipase C genes are present in aspergilli. ACTA ACUST UNITED AC 2006; 110:1140-51. [PMID: 17015001 DOI: 10.1016/j.mycres.2006.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/05/2006] [Accepted: 07/28/2006] [Indexed: 11/29/2022]
Abstract
Fungi secrete extracellular enzymes to enable them to harvest nutrients from the environment. In the case of pathogenic fungi these enzymes can also be pathogenesis factors. Here we report the identification in fungi of a complex family of extracellular phospholipase C (PLC) enzymes, homologous to the Pseudomonas aeruginosa PLCH_PSEAE. Database searches and phylogenetic analysis showed that the PLCs clustered into two groups with different evolutionary histories. One group, subdivided into PLC-A, -B, -C and -D, was found only in aspergilli and Neosartorya fischeri. Each species only ever showed three of the four PLCs except N. fischeri which had all four PLCs plus duplicate PLC-A, -B and -C genes. Modelling studies indicated that these PLCs had mechanistic similarities to phosphoesterases and aryl sulphatases, but that they probably did not differ in substrate specificity. The second group, PLC-E, was seen in a wider range of fungi including some species of aspergilli and was always found in a head-to-head arrangement with a copper oxidase, similar to the laccases. The PLC genes appear to have arisen from separate gene transfer events from bacteria or lower eukaryotes. Thus, aspergilli have acquired PLCs twice in the course of evolution.
Collapse
|
17
|
Ng CKL, Obando D, Widmer F, Wright LC, Sorrell TC, Jolliffe KA. Correlation of antifungal activity with fungal phospholipase inhibition using a series of bisquaternary ammonium salts. J Med Chem 2006; 49:811-6. [PMID: 16420066 DOI: 10.1021/jm0508843] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of bisquaternary ammonium salts with a 12-carbon spacer between the positive charges were synthesized, and their antifungal activity has been investigated. Compounds with butyl, pentyl, and isopentyl headgroups were the most potent antifungal agents with MICs in the range of 2.2-5.5 microM against both Cryptococcus neoformans and Candida albicans. The antifungal activity of these compounds correlated with their inhibition of cryptococcal phospholipase B1 (PLB1), a newly identified virulence factor. This indicates that the mode of action of these compounds may be inhibition of the fungal PLB1 enzyme, further validating this enzyme as a target for the development of novel antifungal therapies.
Collapse
Affiliation(s)
- Clarissa K L Ng
- School of Chemistry, The University of Sydney, 2006 NSW, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Rementeria A, López-Molina N, Ludwig A, Vivanco AB, Bikandi J, Pontón J, Garaizar J. Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 2005; 22:1-23. [PMID: 15813678 DOI: 10.1016/s1130-1406(05)70001-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aspergillus fumigatus causes a wide range of diseases that include mycotoxicosis, allergic reactions and systemic diseases (invasive aspergillosis) with high mortality rates. Pathogenicity depends on immune status of patients and fungal strain. There is no unique essential virulence factor for development of this fungus in the patient and its virulence appears to be under polygenetic control. The group of molecules and genes associated with the virulence of this fungus includes many cell wall components, such as beta-(1-3)-glucan, galactomannan, galactomannanproteins (Afmp1 and Afmp2), and the chitin synthetases (Chs; chsE and chsG), as well as others. Some genes and molecules have been implicated in evasion from the immune response, such as the rodlets layer (rodA/hyp1 gene) and the conidial melanin-DHN (pksP/alb1 gene). The detoxifying systems for Reactive Oxygen Species (ROS) by catalases (Cat1p and Cat2p) and superoxide dismutases (MnSOD and Cu, ZnSOD), had also been pointed out as essential for virulence. In addition, this fungus produces toxins (14 kDa diffusible substance from conidia, fumigaclavin C, aurasperon C, gliotoxin, helvolic acid, fumagilin, Asp-hemolysin, and ribotoxin Asp fI/mitogilin F/restrictocin), allergens (Asp f1 to Asp f23), and enzymatic proteins as alkaline serin proteases (Alp and Alp2), metalloproteases (Mep), aspartic proteases (Pep and Pep2), dipeptidyl-peptidases (DppIV and DppV), phospholipase C and phospholipase B (Plb1 and Plb2). These toxic substances and enzymes seems to be additive and/or synergistic, decreasing the survival rates of the infected animals due to their direct action on cells or supporting microbial invasion during infection. Adaptation ability to different trophic situations is an essential attribute of most pathogens. To maintain its virulence attributes A. fumigatus requires iron obtaining by hydroxamate type siderophores (ornitin monooxigenase/SidA), phosphorous obtaining (fos1, fos2, and fos3), signal transductional falls that regulate morphogenesis and/or usage of nutrients as nitrogen (rasA, rasB, rhbA), mitogen activated kinases (sakA codified MAP-kinase), AMPc-Pka signal transductional route, as well as others. In addition, they seem to be essential in this field the amino acid biosynthesis (cpcA and homoaconitase/lysF), the activation and expression of some genes at 37 degrees C (Hsp1/Asp f12, cgrA), some molecules and genes that maintain cellular viability (smcA, Prp8, anexins), etc. Conversely, knowledge about relationship between pathogen and immune response of the host has been improved, opening new research possibilities. The involvement of non-professional cells (endothelial, and tracheal and alveolar epithelial cells) and professional cells (natural killer or NK, and dendritic cells) in infection has been also observed. Pathogen Associated Molecular Patterns (PAMP) and Patterns Recognizing Receptors (PRR; as Toll like receptors TLR-2 and TLR-4) could influence inflammatory response and dominant cytokine profile, and consequently Th response to infec tion. Superficial components of fungus and host cell surface receptors driving these phenomena are still unknown, although some molecules already associated with its virulence could also be involved. Sequencing of A. fumigatus genome and study of gene expression during their infective process by using DNA microarray and biochips, promises to improve the knowledge of virulence of this fungus.
Collapse
Affiliation(s)
- Aitor Rementeria
- Departamento Inmunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Spain.
| | | | | | | | | | | | | |
Collapse
|
19
|
Robson GD, Huang J, Wortman J, Archer DB. A preliminary analysis of the process of protein secretion and the diversity of putative secreted hydrolases encoded inAspergillus fumigatus: insights from the genome. Med Mycol 2005; 43 Suppl 1:S41-7. [PMID: 16110791 DOI: 10.1080/13693780400024305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The genome sequence of Aspergillus fumigatus has enabled the annotation of genes likely to encode secreted enzymes that may be important in underpinning the natural lifestyle of the fungus and its pathogenicity. We summarize the data from the genome sequence relevant to both the process of protein secretion and the predicted hydrolase enzymes secreted by A. fumigatus.
Collapse
Affiliation(s)
- G D Robson
- Faculty of Life Sciences, Stopford Building, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
20
|
Shen DK, Noodeh AD, Kazemi A, Grillot R, Robson G, Brugère JF. Characterisation and expression of phospholipases B from the opportunistic fungusAspergillus fumigatus. FEMS Microbiol Lett 2004; 239:87-93. [PMID: 15451105 DOI: 10.1016/j.femsle.2004.08.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/17/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022] Open
Abstract
The phospholipase B family (PLB) are enzymes sharing phospholipase (PL), lysophospholipase (LPL) and lysophospholipase-transacylase (LPTA) activities. They have been shown to be important virulence factors in several human fungal pathogens including Candida albicans and Cryptococcus neoformans. Aspergillus fumigatus, a human opportunistic fungal pathogen leading to a high rate of mortality in immunosuppressed patients is known to possess an extracellular phospholipase B activity. In this paper, we report the molecular characterisation of three PLB genes from A. fumigatus (afplb) using degenerate primers in PCR amplification and data from the A. fumigatus genome project. They are expressed at 37 degrees C, and two of them (afplb1 and afplb3) are induced by lecithin. They encode proteins of 633, 588 and 630 amino acids, respectively, presenting together a T-Coffee score of 81. They also possess the amino acid triad responsible for enzymatic activity in the mammalian cytosolic PLA2 and other fungal PLBs. AfPLB1 and afPLB3 are secreted with a cleaved signal peptide. The complete cDNA sequences were obtained by RACE-PCR for the two secreted afPLBs and probably account for the extracellular phospholipase activity previously reported in the culture media of A. fumigatus.
Collapse
Affiliation(s)
- Da-Kang Shen
- Laboratoire Interactions Cellulaires Parasite-Hôte--ICPH, Facultéde Médecine et Pharmacie, Université Joseph Fourier, F-38706 La Tronche, France
| | | | | | | | | | | |
Collapse
|