1
|
Lu Y, Cui Y, Hou L, Jiang Y, Shang J, Wang L, Xu H, Ye W, Qiu Y, Guo B. Optimized automated radiosynthesis of 18F-JNJ64413739 for purinergic ion channel receptor 7 (P2X7R) imaging in osteoporotic model rats. Front Pharmacol 2024; 15:1517127. [PMID: 39726781 PMCID: PMC11669691 DOI: 10.3389/fphar.2024.1517127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Objective To optimize the automated radiosynthesis of the purinergic ion channel receptor 7 (P2X7R) imaging agent 18F-JNJ64413739 and evaluate its potential for brain imaging in osteoporotic model rats. Methods A more electron-deficient nitropyridine was employed as the labeling precursor to facilitate the 18F-labeling. The radiosynthesis was conducted on an AllinOne synthesis module, and followed by purification via high-performance liquid chromatography (HPLC). The resulting 18F-JNJ64413739 was subjected to quality control tests. Small-animal PET/CT imaging studies were performed in sham and osteoporotic model rats. Results The optimized automated radiossynthesis of 18F-JNJ64413739 was successfully completed in approximately 100 min with non-decay-corrected radiochemical yield of 6.7% ± 3.8% (n = 3), >97% radiochemical purity and >14.3 ± 1.3 GBq/μmol molar activity. The product met all clinical quality requirements. 18F-JNJ64413739 PET/CT imaging showed revealed significantly higher radioactivity uptake in various brain regions of the osteoporotic model rats compared to sham control group. Conclusion We successfully optimized the automated radiosynthesis of 18F-JNJ64413739. The resulting tracer not only met clinical quality requirements but also demonstrated potential for clinical application in the diagnosis of osteoporosis, as evidenced by higher radioactivity uptake in various brain regions of osteoporotic model rats compared to normal controls.
Collapse
Affiliation(s)
- Yingtong Lu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan Cui
- Traditional Chinese Medicine Department, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lu Hou
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuanfang Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingjie Shang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hao Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Weijian Ye
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yang Qiu
- Department of Gynecology, Jiangmen Wuyi Traditional Chinese Medicine Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Bin Guo
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Du Y, Cao Y, Song W, Wang X, Yu Q, Peng X, Zhao R. Role of the P2X7 receptor in breast cancer progression. Purinergic Signal 2024:10.1007/s11302-024-10039-6. [PMID: 39039304 DOI: 10.1007/s11302-024-10039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer is a common malignant tumor, whose incidence is increasing year by year, and it has become the malignant tumor with the highest incidence rate in women. Purine ligand-gated ion channel 7 receptor (P2X7R) is a cation channel receptor with Adenosine triphosphate ( ATP) as a ligand, which is widely distributed in cells and tissues, and is closely related to tumorigenesis and progression. P2X7R plays an important role in cancer by interacting with ATP. Studies have shown that P2X7R is up-regulated in breast cancer and can promote tumor invasion and metastasis by activating the protein kinase B (AKT) signaling pathway, promoting epithelial-mesenchymal transition (EMT), controlling the generation of extracellular vesicle (EV), and regulating the expression of the inflammatory protein cyclooxygenase 2 (COX-2). Furthermore, P2X7R was proven to play an essential role in the proliferation and apoptosis of breast cancer cells. Recently, inhibitors targeting P2X7R have been found to inhibit the progression of breast cancer. Natural P2X7R antagonists, such as rhodopsin, and the isoquinoline alkaloid berberine, have also been shown to be effective in inhibiting breast cancer progression. In this article, we review the research progress of P2X7R and breast cancer intending to provide new targets and directions for breast cancer treatment.
Collapse
Affiliation(s)
- Yanan Du
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Yahui Cao
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Wei Song
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Xin Wang
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Qingqing Yu
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China.
| | - Ronglan Zhao
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China.
| |
Collapse
|
3
|
Huang H, He YM, Lin MM, Wang Y, Zhang X, Liang L, He X. P2X7Rs: new therapeutic targets for osteoporosis. Purinergic Signal 2023; 19:207-219. [PMID: 35106736 PMCID: PMC9984661 DOI: 10.1007/s11302-021-09836-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence suggests that both the occurrence and progression of osteoporosis are associated with inflammation, especially in primary osteoporosis. The maintenance of skeletal homeostasis is dependent on the complex regulation of bone metabolism. Numerous evidence suggested that purinoceptor networks are essential for bone homeostasis. In this review, the relationship between inflammation and the development of osteoporosis and the role of P2X7 receptor (P2X7R) in regulating the dynamic regulation of bone reconstruction were covered. We also discussed how P2X7R regulates the balance between resorption and bone formation by osteoblasts and reviewed the relevance of P2X7R polymorphisms in skeletal physiology. Finally, we analyzed potential targets of P2X7R for osteoporosis.
Collapse
Affiliation(s)
- Haoyun Huang
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yu-Mei He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Miao-Miao Lin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaomei Zhang
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China
| | - Li Liang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Lv X, Jiang Y, Yang D, Zhu C, Yuan H, Yuan Z, Suo C, Chen X, Xu K. The role of metabolites under the influence of genes and lifestyles in bone density changes. Front Nutr 2022; 9:934951. [PMID: 36118775 PMCID: PMC9481263 DOI: 10.3389/fnut.2022.934951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Osteoporosis is a complex bone disease influenced by numerous factors. Previous studies have found that some metabolites are related to bone mineral density (BMD). However, the associations between metabolites and BMD under the influence of genes and lifestyle have not been fully investigated. Methods We analyzed the effect of metabolites on BMD under the synergistic effect of genes and lifestyle, using the data of 797 participants aged 55–65 years from the Taizhou Imaging Study. The cumulative sum method was used to calculate the polygenic risk score of SNPs, and the healthful plant-based diet index was used to summarize food intake. The effect of metabolites on BMD changes under the influence of genes and lifestyle was analyzed through interaction analysis and mediation analysis. Results Nineteen metabolites were found significantly different in the osteoporosis, osteopenia, and normal BMD groups. We found two high-density lipoprotein (HDL) subfractions were positively associated with osteopenia, and six very-low-density lipoprotein subfractions were negatively associated with osteopenia or osteoporosis, after adjusting for lifestyles and genetic factors. Tea drinking habits, alcohol consumption, smoking, and polygenic risk score changed BMD by affecting metabolites. Conclusion With the increased level of HDL subfractions, the risk of bone loss in the population will increase; the risk of bone loss decreases with the increased level of very-low-density lipoprotein subfractions. Genetic factors and lifestyles can modify the effects of metabolites on BMD. Our results show evidence for the precise prevention of osteoporosis.
Collapse
Affiliation(s)
- Xuewei Lv
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Dantong Yang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Ministry of Education Key Laboratory of Public Health Safety, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- *Correspondence: Xingdong Chen,
| | - Kelin Xu
- Ministry of Education Key Laboratory of Public Health Safety, Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- Kelin Xu,
| |
Collapse
|
5
|
Xiao F, Peng P, Gao S, Lin T, Fang W, He W. Inverse association between low-density lipoprotein cholesterol and bone mineral density in young- and middle-aged people: The NHANES 2011–2018. Front Med (Lausanne) 2022; 9:929709. [PMID: 36035390 PMCID: PMC9399501 DOI: 10.3389/fmed.2022.929709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesLow-density lipoprotein cholesterol (LDL-C) plays an essential part in bone metabolism. However, the correlation between LDL-C levels and bone mineral density (BMD) is still controversial. This study aimed to explore the relationship between LDL-C levels and lumbar BMD in young- and middle-aged people.MethodsWe conducted a cross-sectional study comprising 4,441 participants aged 20–59 from the National Health and Nutrition Examination Survey (NHANES). LDL-C levels and lumbar BMD were used as independent and dependent variables, respectively. We evaluated the correlation between LDL-C levels and lumbar BMD through a weighted multivariate linear regression model. We performed a subgroup analysis of the relationship between LDL-C levels and lumbar BMD based on age, gender, and body mass index (BMI).ResultsAfter adjusting for confounding factors, LDL-C levels were negatively correlated with lumbar BMD. In subgroup analyses stratified by gender, this negative association was statistically significant in men and women. In the subgroup analysis stratified by age, a negative connection existed in people aged 30–49 years. In the subgroup analysis divided by BMI, there was an inverse correlation in overweight people (25 ≤ BMI < 30).ConclusionsOur research observed an inverse association between LDL-C levels and lumbar BMD in young- and middle-aged people, especially in people aged 30–49 years and who are overweight. Close monitoring of BMD and early intervention may be required for these people.
Collapse
Affiliation(s)
- Fangjun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Peng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihua Gao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianye Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihua Fang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China
- Joint Center, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wei He
| |
Collapse
|
6
|
P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021; 906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.
Collapse
|
7
|
Lu J, Zhou Z, Ma J, Lu N, Lei Z, Du D, Chen A. Tumour necrosis factor-α promotes BMHSC differentiation by increasing P2X7 receptor in oestrogen-deficient osteoporosis. J Cell Mol Med 2020; 24:14316-14324. [PMID: 33169524 PMCID: PMC7753841 DOI: 10.1111/jcmm.16048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The exact mechanism of tumour necrosis factor α (TNF‐α) promoting osteoclast differentiation is not completely clear. A variety of P2 purine receptor subtypes have been confirmed to be widely involved in bone metabolism. Thus, the purpose of this study was to explore whether P2 receptor is involved in the differentiation of osteoclasts. Mouse bone marrow haematopoietic stem cells (BMHSCs) were co‐cultured with TNF‐α to explore the effect of TNF‐α on osteoclast differentiation and bone resorption capacity in vitro, and changes in the P2 receptor were detected at the same time. The P2 receptor was silenced and overexpressed to explore the effect on differentiation of BMHSCs into osteoclasts. In an in vivo experiment, the animal model of PMOP was established in ovariectomized mice, and anti‐TNF‐α intervention was used to detect the ability of BMHCs to differentiate into osteoclasts as well as the expression of the P2 receptor. It was confirmed in vitro that TNF‐α at a concentration of 20 ng/mL up‐regulated the P2X7 receptor of BMHSCs through the PI3k/Akt signalling pathway, promoted BMHSCs to differentiate into a large number of osteoclasts and enhanced bone resorption. In vivo experiments showed that more P2X7 receptor positive osteoclasts were produced in postmenopausal osteoporotic mice. Anti‐TNF‐α could significantly delay the progression of PMOP by inhibiting the production of osteoclasts. Overall, our results revealed a novel function of the P2X7 receptor and suggested that suppressing the P2X7 receptor may be an effective strategy to delay bone formation in oestrogen deficiency‐induced osteoporosis.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Zhibin Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Jun Ma
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Nan Lu
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Zhu Lei
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Di Du
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Aimin Chen
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
8
|
Zhang WJ, Zhu ZM. Association between the rs3751143 polymorphism of P2RX7 gene and chronic lymphocytic leukemia: A meta-analysis. Purinergic Signal 2020; 16:479-484. [PMID: 33026566 DOI: 10.1007/s11302-020-09737-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Meta-analysis was used to determine the association between rs3751143 polymorphism of P2RX7 gene and the risk of chronic lymphocytic leukemia (CLL). METHODS Search for published articles about the association between the rs3751143 and CLL in PubMed, MEDINE, Web of Science, and Embase databases, with a calculated odds ratio of (OR) and 95% confidence interval (95%CI). RESULTS A total of 1184 cases and 1725 controls in 8 studies were pooled together for evaluation of the overall association between rs3751143 and risk of CLL. Allele model (A vs C, p = 0.16, OR = 0.85, 95%CI = 0.71-1.17), homozygous model (AA vs CC, p = 0.07; OR = 0.78, 95%CI = 0.84-1.08), and heterozygous model (AC vs CC, p = 0.76; OR = 0.85; 95%CI = 0.68-0.79) did not show decreased risk of developing CLL. Similarly, dominant model (AA + AC vs. CC: p = 0.58; OR = 1.10, 95%CI = 0.69-1.75), and recessive model (AA vs AC + CC, p = 0.21, OR = 1.18, 95%CI = 0.70-1.99) failed to show decreased risk of developing CLL. However, in familial, heterozygous model (AC vs. CC: p = 0.0006, OR = 0.64, 95%CI = 0.67-1.50) and recessive model (AA vs. AC + CC: p = 0.0017; OR = 1.02, 95%CI = 0.73-2.35) indicated the association between the inheritance of rs3751143 and the risk of developing CLL. In the overall survival prognosis, no significant association between rs3751143 and CLL was detected with relatively high heterogeneity. CONCLUSIONS Our pooled data indicates that there is a correlation between the inheritance of rs3751143 and the risk of CLL in familial.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, 343000, Jiangxi, China
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, 343000, Jiangxi, China.
| |
Collapse
|