1
|
Dirik HB, Ertan H. Hemispheric synchronization patterns linked with shooting performance in archers. Behav Brain Res 2024; 460:114813. [PMID: 38110123 DOI: 10.1016/j.bbr.2023.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Sustainable attention, effective visual-spatial perception, and motor control skills are considered highly important for achieving superior athletic performance. The aim of the current study was to investigate hemispheric synchronization patterns of brain electrical activation related to successful and unsuccessful shots of archers using electroencephalography (EEG). This study involved 16 elite archers, each shooting 36 arrows. The 10 shots closest to the target's center were successful, while the 10 farthest shots were unsuccessful. The transformed EEG data, obtained through surface Laplacian filtering, were divided into 5 sub-bands (theta, alpha1, alpha2, beta1, beta2) by calculating the alpha peak frequencies. The synchronization values of the electrode pairs were calculated using the Phase Locking Value (PLV) method. To compare the EEG data for successful and unsuccessful shots in all frequency bands, the linear mixed models were fitted. Perceived fatigue levels were quantified using a visual analog scale (VAS). Spearman's correlation analysis was conducted to examine the relationship between fatigue and shooting performance. The results showed significantly higher coupling strength for C3-O1, C4-O2, O1-O2, F3-F4, C4-T8, T7-O2, F4-C4, C3-O2 and F4-T8 pairs during successful shooting. Moreover, the coupling strengths for F3-O2, F4-T7, C3-C4, C3-T8, T7-T8, C4-O1, F3-T8, and F4-O2 were significantly higher in unsuccessful shooting. The current findings revealed differences in the synchronization patterns associated with shooting performance. It is observed that visual-motor performance is correlated with an increase in cortical synchronization values during successful shots. These findings have the potential to serve as a theoretical reference that contributes to superior performance.
Collapse
Affiliation(s)
- Hasan Batuhan Dirik
- Eskisehir Technical University, Department of Movement and Training Sciences, Faculty of Sport Sciences, Eskisehir, TURKEY.
| | - Hayri Ertan
- Eskisehir Technical University, Department of Movement and Training Sciences, Faculty of Sport Sciences, Eskisehir, TURKEY
| |
Collapse
|
2
|
Xu Z, Dong Y, Wang Y, Song L, Niu S, Wang S, Zhao M, Wang J, Cong L, Han X, Hou T, Tang S, Zhang Q, Du Y, Qiu C. Associations of macular microvascular parameters with cerebral small vessel disease in rural older adults: A population-based OCT angiography study. Front Neurol 2023; 14:1133819. [PMID: 37006481 PMCID: PMC10060796 DOI: 10.3389/fneur.2023.1133819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveTo explore the associations of macular microvascular parameters with cerebral small vessel disease (CSVD) in rural-dwelling older adults in China.MethodsThis population-based cross-sectional study included 195 participants (age ≥ 60 years; 57.4% women) in the optical coherence tomographic angiography (OCTA) sub-study within the Multimodal Interventions to delay Dementia and disability in rural China (MIND-China). Macular microvascular parameters were measured using the OCTA. We automatically estimated volumes of gray matter, white matter, and white matter hyperintensity (WMH), and manually assessed numbers of enlarged perivascular spaces (EPVS) and lacunes on brain magnetic resonance imaging. Data were analyzed with the general linear models.ResultsAdjusting for multiple confounders, lower vessel skeleton density (VSD) and higher vessel diameter index (VDI) were significantly associated with larger WMH volume (P < 0.05). Lower VSD and foveal density-300 (FD-300) of left eye were significantly associated with lower brain parenchymal volume (P < 0.05). In addition, lower areas of foveal avascular zone (FAZ) and FD-300 of left eye were significantly associated with more EPVS (P < 0.05). The associations of abnormal macular microvascular parameters with WMH volume were evident mainly among females. Macular microvascular parameters were not associated with lacunes.ConclusionMacular microvascular signs are associated with WMH, brain parenchymal volume, and EPVS in older adults. The OCTA-assessed macular microvascular parameters can be valuable markers for microvascular lesions in the brain.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Sijie Niu
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, Shandong, China
| | - Shanshan Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Mingqing Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jiafeng Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Xiaojuan Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
| | - Qinghua Zhang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
- *Correspondence: Qinghua Zhang
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China
- Yifeng Du
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Chapin BA, Pisanuwongrak K, Williamson JB, Heilman KM. Vertical pseudoneglect: Sensory-attentional versus action-intentional. J Clin Exp Neuropsychol 2022; 44:163-170. [PMID: 35819050 DOI: 10.1080/13803395.2022.2098934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Healthy persons demonstrate an upward bias on the vertical-line bisection test (vertical or "altitudinal" pseudoneglect). This bias might be sensory-attentional or action-intentional in origin. To test the action-intention hypothesis, we analyze whether the direction of action has an effect on altitudinal pseudoneglect. METHODS Twenty-four healthy right-handed adults performed vertical-line bisection on an apparatus designed to distinguish the effects of sensory-attention and action-intention. Depending on hand placement, participants estimated line midpoints with a marker that moved in the same (congruent) or opposite (incongruent) direction as their hand movements. Two binary factors - hand movement in the upward versus downward direction and congruent vs incongruent hand movements - produced four conditions. RESULTS There was upward deviation from the midline across all conditions. Bisections in the incongruent condition were higher than in the congruent condition. Bisections were also higher with upward hand movements than with downward hand movements. There was not a significant interaction between these factors. CONCLUSIONS These results suggest that vertical pseudoneglect is primarily influenced by the allocation of allocentric attention, rather than action-intention. However, action-perceptual spatial incongruence increased this deviation. Perhaps the incongruent condition requires greater allocation of attention, but further exploration is needed. Additionally, these results suggest that visual attention follows the direction of motor action. Future studies of visual attention should consider the potential influence of this factor.
Collapse
Affiliation(s)
- Benjamin A Chapin
- Division of Behavioral Neurology and Neuropsychiatry, Department of Neurology, University of Florida, Gainesville, FL, USA.,Geriatric Research, Education, and Clinical Center (GRECC), Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - K Pisanuwongrak
- Division of Behavioral Neurology and Neuropsychiatry, Department of Neurology, University of Florida, Gainesville, FL, USA.,Geriatric Research, Education, and Clinical Center (GRECC), Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Neurology, Synphaet Hospital, Bangkok, Thailand.,Department of Neurology, Prasat Neurological Institute, Bangkok, Thailand
| | - John B Williamson
- Brain Rehabilitation Research Center, VAMC, North Florida/South, Georgia.,Center for OCD and Anxiety Related Disorders, Department of Psychiatry, University of Florida, Gainesville, FL, USA.,Center for Cognitive Aging and Memory, College of Medicine, University of Florida, Gainesville, FL, USA
| | - K M Heilman
- Division of Behavioral Neurology and Neuropsychiatry, Department of Neurology, University of Florida, Gainesville, FL, USA.,Geriatric Research, Education, and Clinical Center (GRECC), Malcom Randall VA Medical Center, Gainesville, FL, USA
| |
Collapse
|
4
|
Abstract
Stroke causes many forms of disability, including emotional and mood disorders. Depression is the most common of these, affecting approximately one-third of stroke patients. Other disorders like mania, bipolar disorder, anxiety disorder, or apathy may also develop following stroke, although they are less common. The development of mood and emotional disorders is dependent on the severity of brain injury, the side of injury, and hemispheric location. Whereas a left hemispheric stroke often results in depression or a catastrophic reaction with anxiety, injury to the right hemisphere has predominantly been associated with the development of emotional indifference (anosodiaphoria) or euphoria. In this chapter, we discuss the mood disorders associated with hemispheric strokes and the neuropsychological mechanisms that might account for the clinical manifestations of these affective disorders.
Collapse
Affiliation(s)
- Michał Harciarek
- Department of Social Sciences, Institute of Psychology, University of Gdansk, Gdansk, Poland.
| | - Aleksandra Mańkowska
- Department of Social Sciences, Institute of Psychology, University of Gdansk, Gdansk, Poland
| |
Collapse
|