1
|
Tang M, Wu ZE, Li F. Integrating network pharmacology and drug side-effect data to explore mechanism of liver injury-induced by tyrosine kinase inhibitors. Comput Biol Med 2024; 170:108040. [PMID: 38308871 DOI: 10.1016/j.compbiomed.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) are highly efficient small-molecule anticancer drugs. Despite the specificity and efficacy of TKIs, they can produce off-target effects, leading to severe liver toxicity, and even some of them are labeled as black box hepatotoxicity. Thus, we focused on representative TKIs associated with severe hepatic adverse events, namely lapatinib, pazopanib, regorafenib, and sunitinib as objections of study, then integrated drug side-effect data from United State Food and Drug Administration (U.S. FDA) and network pharmacology to elucidate mechanism underlying TKI-induced liver injury. Based on network pharmacology, we constructed a specific comorbidity module of high risk of serious adverse effects and created drug-disease networks. Enrichment analysis of the networks revealed the depletion of all-trans-retinoic acid and the involvement of down-regulation of the HSP70 family-mediated endoplasmic reticulum (ER) stress as key factors in TKI-induced liver injury. These results were further verified by transcription data. Based on the target prediction results of drugs and reactive metabolites, we also shed light on the association between toxic metabolites and severe hepatic adverse reactions, and thinking HSPA8, HSPA1A, CYP1A1, CYP1A2 and CYP3A4 were potential therapeutic or preventive targets against TKI-induced liver injury. In conclusion, our research provides comprehensive insights into the mechanism underlying severe liver injury caused by TKIs, offering a better understanding of how to enhance patient safety and treatment efficacy.
Collapse
Affiliation(s)
- Miaomiao Tang
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhanxuan E Wu
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Melis M, Trasino SE, Tang XH, Rappa A, Zhang T, Qin L, Gudas LJ. Retinoic Acid Receptor β Loss in Hepatocytes Increases Steatosis and Elevates the Integrated Stress Response in Alcohol-Associated Liver Disease. Int J Mol Sci 2023; 24:12035. [PMID: 37569418 PMCID: PMC10418449 DOI: 10.3390/ijms241512035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
In alcohol-associated liver disease (ALD), hepatic reductions in vitamin A and perturbations in vitamin A metabolism are common. However, the roles that the vitamin A receptors, termed retinoic acid receptors (RARs), may have in preventing the pathophysiology of ALD remains unclear. Our prior data indicate that a RARβ agonist limits the pathology of alcohol-related liver disease. Thus, we generated liver-specific AlbCre-RARβ knockout (BKO) mice and compared them to wild type (WT) mice in an early ALD model. Both strains showed similar blood ethanol concentrations and ETOH-metabolizing enzymes. However, the livers of pair-fed-BKO and ETOH-BKO mice developed higher levels of steatosis and triglycerides than pair-fed-WT and ETOH-WT mice. The increased hepatic steatosis observed in the pair-fed-BKO and ETOH-BKO mice was associated with higher lipid synthesis/trafficking transcripts and lower beta-oxidation transcripts. ETOH-BKO mice also exhibited a higher integrated stress response (ISR) signature, including higher transcript and protein levels of ATF4 and its target, 4-EBP1. In human hepatocytes (HepG2) that lack RARβ (RARβ-KO), ETOH treatments resulted in greater reactive oxygen species compared to their parental cells. Notably, even without ETOH, ATF4 and 4-EBP1 protein levels were higher in the RARβ-KO cells than in their parental cells. These 4-EBP1 increases were greatly attenuated in cultured ATF4-deficient and RARβ/ATF4-deficient HepG2, suggesting that RARβ is a crucial negative regulator of 4-EBP1 through ATF4 in cultured hepatocytes. Here, we identify RARβ as a negative regulator of lipid metabolism and cellular stress in ALD.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; (M.M.)
| | - Steven E. Trasino
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; (M.M.)
- Nutrition Program, Hunter College, City University of New York, New York, NY 10065, USA
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; (M.M.)
| | - Andrew Rappa
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; (M.M.)
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Lihui Qin
- Division of Anatomic Pathology, New York Presbyterian Hospital, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; (M.M.)
| |
Collapse
|
3
|
Daei S, Abbasalipourkabir R, Khajvand-Abedini M, Ziamajidi N. The Alleviative Efficacy of Vitamins A, C, and E Against Zinc Oxide Nanoparticles-Induced Hepatic Damage by Reducing Apoptosis in Rats. Biol Trace Elem Res 2023; 201:1252-1260. [PMID: 35364806 DOI: 10.1007/s12011-022-03218-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles are vastly exploited in today's technology. However, it is realized that exposure to high concentrations of nanoparticles (NPs) may have adverse effects on human health. According to previous reports, zinc oxide (ZnO) NPs cause toxic effects in tissues via inducing apoptosis. The current work was designed to evaluate possible protective activities of vitamins (Vits) A, C, and E against ZnO NPs-induced apoptosis in the liver of rats. To this aim, fifty-four adult male Wistar rats were randomly distributed into nine groups (n = 6 rats for each group), namely, Control1 (water), Control2 (olive oil), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg), ZnO (200 mg/kg), ZnO + VitA, ZnO + VitC, and ZnO + VitE. To investigate apoptosis, the mRNA and protein expression of Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) were examined by qRT-PCR and western blot techniques. The mRNA and protein expression of TNF-α as well as the activity of caspase 3,7 were also measured. The results revealed that ZnO NPs considerably enhance the ratio of Bax to Bcl-2 mRNA and protein expression as well as the activity of caspase 3,7 compared to the control group. Furthermore, the findings implied that the elevated level of TNF-α may link with ZnO NPs-mediated apoptosis in the liver of rats. More importantly, Vits A, C, and E exhibited ameliorative properties against apoptosis-inducing effects of ZnO NPs. Thus, administration of Vits A, C, and E may be effective in preventing liver damage and apoptosis caused by ZnO NPs.
Collapse
Affiliation(s)
- Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Khajvand-Abedini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran.
| |
Collapse
|
4
|
van der Mijn JC, Chen Q, Laursen KB, Khani F, Wang X, Dorsaint P, Sboner A, Gross SS, Nanus DM, Gudas LJ. Transcriptional and metabolic remodeling in clear cell renal cell carcinoma caused by ATF4 activation and the integrated stress response (ISR). Mol Carcinog 2022; 61:851-864. [PMID: 35726553 PMCID: PMC9378514 DOI: 10.1002/mc.23437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022]
Abstract
Research has shown extensive metabolic remodeling in clear cell renal cell carcinoma (ccRCC), with increased glutathione (GSH) levels. We hypothesized that activating transcription factor-4 (ATF4) and the integrated stress response (ISR) induce a metabolic shift, including increased GSH accumulation, and that Vitamin A deficiency (VAD), found in ccRCCs, can also activate ATF4 signaling in the kidney. To determine the role of ATF4, we used publicly available RNA sequencing (RNA-seq) data sets from The Cancer Genomics Atlas. Subsequently, we performed RNA-seq and liquid chromatography-mass spectrometry-based metabolomics analysis of the murine TRAnsgenic Cancer of the Kidney (TRACK) model for early-stage ccRCC. To validate our findings, we generated RCC4 cell lines with ATF4 gene edits (ATF4-knockout [KO]) and subjected these cells to metabolic isotope tracing. Analysis of variance, the two-sided Student's t test, and gene set enrichment analysis were used (p < 0.05) to determine statistical significance. Here we show that most human ccRCC tumors exhibit activation of the transcription factor ATF4. Activation of ATF4 is concomitant with enrichment of the ATF4 gene set and elevated expression of ATF4 target genes ASNS, ALDH1L2, MTHFD2, DDIT3 (CHOP), DDIT4, TRIB3, EIF4EBP1, SLC7A11, and PPP1R15A (GADD34). Transcript profiling and metabolomics analyses show that activated hypoxia-inducible factor-1α (HIF1α) signaling in our TRACK ccRCC murine model also induces an ATF4-mediated ISR. Notably, both normoxic HIF1α signaling in TRACK kidneys and VAD in wild-type kidneys diminish amino acid levels, increase ASNS, TRIB3, and MTHFD2 messenger RNA levels, and increase levels of lipids and GSH. By metabolic isotope tracing in human RCC4 kidney cancer parental and ATF4 gene-edited (ATF4-KO) cell lines, we show that ATF4 increases GSH accumulation in part via activation of the mitochondrial one-carbon metabolism pathway. Our results demonstrate for the first time that activation of ATF4 enhances GSH accumulation, increases purine and pyrimidine biosynthesis, and contributes to transcriptional and metabolic remodeling in ccRCC. Moreover, constitutive HIF1α expressed only in murine kidney proximal tubules activates ATF4, leading to the metabolic changes associated with the ISR. Our data indicate that HIF1α can promote ccRCC via ATF4 activation. Moreover, lack of Vitamin A in the kidney recapitulates aspects of the ISR.
Collapse
Affiliation(s)
- Johannes C. van der Mijn
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- current address: Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Qiuying Chen
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Kristian B. Laursen
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Department of Urology; New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Xiaofei Wang
- Department of Physiology and Biophysics, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Princesca Dorsaint
- Department of Physiology and Biophysics, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Steven S. Gross
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - David M. Nanus
- Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Department of Urology; New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Lorraine J. Gudas
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
- Department of Urology; New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
5
|
Adachi Y, Masuda M, Sakakibara I, Uchida T, Niida Y, Mori Y, Kamei Y, Okumura Y, Ohminami H, Ohnishi K, Yamanaka-Okumura H, Nikawa T, Taketani Y. All-trans retinoic acid changes muscle fiber type via increasing GADD34 dependent on MAPK signal. Life Sci Alliance 2022; 5:5/7/e202101345. [PMID: 35318262 PMCID: PMC8960774 DOI: 10.26508/lsa.202101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
ATRA increases GADD34 expression by decreasing the expression of Six1, which down-regulates the transcriptional activity with TLE3 and increasing mRNA stability through blocking the interaction between TTP and ARE on GADD34 mRNA, resulting in muscle fiber type change. All-trans retinoic acid (ATRA) increases the sensitivity to unfolded protein response in differentiating leukemic blasts. The downstream transcriptional factor of PERK, a major arm of unfolded protein response, regulates muscle differentiation. However, the role of growth arrest and DNA damage-inducible protein 34 (GADD34), one of the downstream factors of PERK, and the effects of ATRA on GADD34 expression in muscle remain unclear. In this study, we identified ATRA increased the GADD34 expression independent of the PERK signal in the gastrocnemius muscle of mice. ATRA up-regulated GADD34 expression through the transcriptional activation of GADD34 gene via inhibiting the interaction of homeobox Six1 and transcription co-repressor TLE3 with the MEF3-binding site on the GADD34 gene promoter in skeletal muscle. ATRA also inhibited the interaction of TTP, which induces mRNA degradation, with AU-rich element on GADD34 mRNA via p-38 MAPK, resulting in the instability of GADD34 mRNA. Overexpressed GADD34 in C2C12 cells changes the type of myosin heavy chain in myotubes. These results suggest ATRA increases GADD34 expression via transcriptional and post-transcriptional regulation, which changes muscle fiber type.
Collapse
Affiliation(s)
- Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Iori Sakakibara
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Niida
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Mori
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Kamei
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yosuke Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hisami Yamanaka-Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
6
|
Vitamins A and D fail to protect against tuberculosis-drug-induced liver injury: A post hoc analysis of a previous randomized controlled trial. Nutrition 2021; 86:111155. [PMID: 33601121 DOI: 10.1016/j.nut.2021.111155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Vitamins A and D provided protection from xenobiotic-induced liver injury in previous animal studies. We conducted a post hoc analysis of our previous randomized controlled trial to investigate the effects of vitamin A and D supplementation on tuberculosis-drug-induced liver injury. METHODS The trial was conducted in a hospital in Qingdao, China, from October 2012 to March, 2015. The control group received only tuberculosis treatment. The vitamin A, vitamin D, and vitamins A & D groups received, respectively, additional supplementation of 2000 IU/d vitamin A, 400 IU/d vitamin D, and a combination of 2000 IU/d vitamin A and 400 IU/d vitamin D. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, γ-glutamyltransferase, and cholinesterase were monitored throughout the treatment. Liver injury was defined as ALT or AST three times higher than the upper limit of normal, which was defined for AST, ALT, alkaline phosphatase, γ-glutamyltransferase, and cholinesterase, respectively, as 40 U/L, 40 U/L, 150 U/L, 40 U/L, and 10 500 U/L. RESULTS Among the 753 participants, 11% exhibited liver injury. No significant effect of vitamin A or D supplementation was observed on the incidence of liver injury or on elevated liver indices including ALT, AST, alkaline phosphatase, γ-glutamyltransferase, and cholinesterase. The interaction between vitamin A and D supplementation was not significant. CONCLUSIONS Vitamin A and D supplementation did not protect against tuberculosis-drug-induced liver injury. Future work should evaluate the effects of higher dosages of vitamins A and D and the effects of different genotypes for vitamin A and D metabolic enzymes or receptors.
Collapse
|
7
|
Priyanka SH, Syam Das S, Nair SS, Rauf AA, Indira M. All trans retinoic acid modulates TNF-α and CYP2E1 pathways and enhances regression of ethanol-induced fibrosis markers in hepatocytes and HSCs in abstaining rodent model. Arch Physiol Biochem 2019; 125:302-310. [PMID: 29592769 DOI: 10.1080/13813455.2018.1455712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Context: Our previous studies showed that all trans retinoic acid (ATRA) ameliorates alcohol-induced toxicity. Hence, we evaluated the efficacy of ATRA and abstention in the regression of alcohol-induced hepatotoxicity. Materials and methods: After ethanol administration to rats for 90 days, the regression of alcohol-induced toxicity was studied by supplementing ATRA at a dose of 100 μg/kg body weight for 30 days. It was also compared with animals in abstention. Results and discussion: Ethanol administration enhanced oxidative stress, activated HSCs and increased collagen deposition. All these alterations were reversed to a certain extent by ATRA supplementation. Conclusions: ATRA had better efficacy than just abstention in reducing ethanol-induced toxicity. The mechanism might be downregulation of CYP2E1, leading to reduced oxidative stress in the hepatocytes and thus impeding NFκB activation, cytokine production, activation of HSC and resulting in the reduction of inflammation and remodelling of fibrosis by modulating MMP and TIMP.
Collapse
Affiliation(s)
- S H Priyanka
- a Department of Biochemistry, University of Kerala , Thiruvananthapuram , India
| | - S Syam Das
- a Department of Biochemistry, University of Kerala , Thiruvananthapuram , India
| | - Saritha S Nair
- a Department of Biochemistry, University of Kerala , Thiruvananthapuram , India
| | - Arun A Rauf
- a Department of Biochemistry, University of Kerala , Thiruvananthapuram , India
| | - M Indira
- a Department of Biochemistry, University of Kerala , Thiruvananthapuram , India
| |
Collapse
|
8
|
Rodriguez CM, Chun SY, Mills RE, Todd PK. Translation of upstream open reading frames in a model of neuronal differentiation. BMC Genomics 2019; 20:391. [PMID: 31109297 PMCID: PMC6528255 DOI: 10.1186/s12864-019-5775-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Upstream open reading frames (uORFs) initiate translation within mRNA 5' leaders, and have the potential to alter main coding sequence (CDS) translation on transcripts in which they reside. Ribosome profiling (RP) studies suggest that translating ribosomes are pervasive within 5' leaders across model systems. However, the significance of this observation remains unclear. To explore a role for uORF usage in a model of neuronal differentiation, we performed RP on undifferentiated and differentiated human neuroblastoma cells. RESULTS Using a spectral coherence algorithm (SPECtre), we identify 4954 consistently translated uORFs across 31% of all neuroblastoma transcripts. These uORFs predominantly utilize non-AUG initiation codons and exhibit translational efficiencies (TE) comparable to annotated coding regions. On a population basis, the global impact of both AUG and non-AUG initiated uORFs on basal CDS translation were small, even when analysis is limited to conserved and consistently translated uORFs. However, uORFs did alter the translation of a subset of genes, including the Diamond-Blackfan Anemia associated ribosomal gene RPS24. With retinoic acid induced differentiation, we observed an overall positive correlation in translational shifts between uORF/CDS pairs. However, CDSs downstream of uORFs show smaller shifts in TE with differentiation relative to CDSs without a predicted uORF, suggesting that uORF translation buffers cell state dependent fluctuations in CDS translation. CONCLUSION This work provides insights into the dynamic relationships and potential regulatory functions of uORF/CDS pairs in a model of neuronal differentiation.
Collapse
Affiliation(s)
- Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Sang Y Chun
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|