1
|
Luo X, Zhang D, Zheng J, Liu H, Sun L, Guo H, Wang L, Cui S. Casein kinase 1α mediates estradiol secretion via CYP19A1 expression in mouse ovarian granulosa cells. BMC Biol 2024; 22:176. [PMID: 39183304 PMCID: PMC11346181 DOI: 10.1186/s12915-024-01957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2023] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Casein kinase 1α (CK1α), expressed in both ovarian germ and somatic cells, is involved in the initial meiosis and primordial follicle formation of mouse oocytes. Using in vitro and in vivo experiments in this study, we explored the function and mechanism of CK1α in estrogen synthesis in mice ovarian granulosa cells. METHODS A CK1α knockout (cKO) mouse model, targeted specifically to ovarian granulosa cells (GCs), was employed to establish the influence of CK1α on in vivo estrogen synthesis. The influence of CK1α deficiency on GCs was determined in vivo and in vitro by immunofluorescence analysis and Western blot assay. Transcriptome profiling, differentially expressed genes and gene functional enrichment analyses, and computation protein-protein docking, were further employed to assess the CK1α pathway. Furthermore, wild-type female mice were treated with the CK1α antagonist D4476 to elucidate the CK1α's role in estrogen regulation. RESULTS Ovarian GCs CK1α deficiency impaired fertility and superovulation of female mice; also, the average litter size and the estradiol (E2) level in the serum of cKO female mice were decreased by 57.3% and 87.4% vs. control mice, respectively. This deficiency disrupted the estrous cycle and enhanced the apoptosis in the GCs. We observed that CK1α mediated the secretion of estradiol in mouse ovarian GCs via the cytochrome P450 subfamily 19 member 1 (CYP19A1). CONCLUSIONS These findings improve the existing understanding of the regulation mechanism of female reproduction and estrogen synthesis. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Xuan Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Longjie Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Lei Wang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
2
|
Zhao C, Shi J, Shang D, Guo M, Zhou C, Zhao W. Protective effect of phytoestrogens on nonalcoholic fatty liver disease in postmenopausal women. Front Pharmacol 2023; 14:1237845. [PMID: 37719855 PMCID: PMC10502324 DOI: 10.3389/fphar.2023.1237845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive metabolic disease characterized by hepatic steatosis, inflammation, and fibrosis that seriously endangers global public health. Epidemiological studies have shown that the incidence of non-alcoholic fatty liver disease in postmenopausal women has significantly increased. Studies have shown that estrogen deficiency is the main reason for this situation, and supplementing estrogen has become a new direction for preventing the occurrence of postmenopausal fatty liver. However, although classical estrogen replacement therapy can reduce the incidence of postmenopausal NAFLD, it has the risk of increasing stroke and cardiovascular diseases, so it is not suitable for the treatment of postmenopausal NAFLD. More and more recent studies have provided evidence that phytoestrogens are a promising method for the treatment of postmenopausal NAFLD. However, the mechanism of phytoestrogens in preventing and treating postmenopausal NAFLD is still unclear. This paper summarizes the clinical and basic research evidence of phytoestrogens and reviews the potential therapeutic effects of phytoestrogens in postmenopausal NAFLD from six angles: enhancing lipid metabolism in liver and adipose tissue, enhancing glucose metabolism, reducing oxidative stress, reducing the inflammatory response, regulating intestinal flora, and blocking liver fibrosis (Graphical Abstract).
Collapse
Affiliation(s)
- ChenLu Zhao
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - JunHao Shi
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - DongFang Shang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Cheng Zhou
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - WenXia Zhao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Fu YT, Zhang J, Liu WB, Zhang YF, Zhang S, Tan LL, Lin Q, Ou-Yang KW, Xiong YW, Chang W, Li H, Yu JY, Zhang C, Xu DX, Zhu HL, Wang H. Gestational cadmium exposure disrupts fetal liver development via repressing estrogen biosynthesis in placental trophoblasts. Food Chem Toxicol 2023; 176:113807. [PMID: 37121429 DOI: 10.1016/j.fct.2023.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd), commonly found in diet and drinking water, is known to be harmful to the human liver. Nevertheless, the effects and mechanisms of gestational Cd exposure on fetal liver development remain unclear. Here, we reported that gestational Cd (150 mg/L) exposure obviously downregulated the expression of critical proteins including PCNA, Ki67 and VEGF-A in proliferation and angiogenesis in fetal livers, and lowered the estradiol concentration in fetal livers and placentae. Maternal estradiol supplement alleviated aforesaid impairments in fetal livers. Our data showed that the levels of pivotal estrogen synthases, such as CYP17A1 and 17β-HSD, was markedly decreased in Cd-stimulated placentae but not fetal livers. Ground on ovariectomy (OVX), we found that maternal ovarian-derived estradiol had no major effects on Cd-impaired development in fetal liver. In addition, Cd exposure activated placental PERK signaling, and inhibited PERK activity could up-regulated the expressions of CYP17A1 and 17β-HSD in placental trophoblasts. Collectively, gestational Cd exposure inhibited placenta-derived estrogen synthesis via activating PERK signaling, and therefore impaired fetal liver development. This study suggests a protective role for placenta-derived estradiol in fetal liver dysplasia shaped by toxicants, and provides a theoretical basis for toxicants to impede fetal liver development by disrupting the placenta-fetal-liver axis.
Collapse
Affiliation(s)
- Yi-Ting Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shuang Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kong-Wen Ou-Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jun-Ying Yu
- Department of Toxicology, School of Public Health, Anhui Medical University, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
4
|
Jdidi H, Ghorbel Koubaa F, Aoiadni N, Elleuch A, Makni-Ayadi F, El Feki A. Effect of Medicago sativa compared To 17β-oestradiol on osteoporosis in ovariectomized mice. Arch Physiol Biochem 2022; 128:951-958. [PMID: 32193946 DOI: 10.1080/13813455.2020.1741644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
Abstract
Phytoestrogens, with a wide range of beneficial effects, prevent bone loss caused by oestrogen deficiency.The purpose of this study was to evaluate the effect of Medicago sativa ethanol extract compared to 17β-oestradiol on osteoporosis in ovariectomized mice.The study was carried out on female mice, divided into five groups: control mice (GI), Medicago sativa treated mice (0.75 g/kg BW/day) (GII), ovariectomized mice (GIII) and ovariectomized mice treated either with Medicago sativa (GIV) or with 17β-oestradiol (50 µg/Kg BW/day) (GV).Our results showed that Medicago sativa or 17β-oestradiol treatments significantly attenuated perturbations of mineral levels, histological changes and oxidative stress in the femurs of ovariectomized mice.Medicago sativa prevented bone loss induced by oestrogen deficiency, which could be attributed to its richness in kaempferol, syringic acid, naringenin and myrictin. Its effects were more beneficial or similar compared to 17β-oestradiol.
Collapse
Affiliation(s)
- Hajer Jdidi
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Fatma Ghorbel Koubaa
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Nissaf Aoiadni
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Aida Elleuch
- Biochemistry Laboratory, CHU H. Bourguiba, Sfax, Tunisia
| | | | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| |
Collapse
|
5
|
Nagamma T, Konuri A, Bhat KMR, Maheshwari R, Udupa P, Nayak Y. Modulation of inflammatory markers by petroleum ether fraction of Trigonella foenum-graecum L. seed extract in ovariectomized rats. J Food Biochem 2021; 45:e13690. [PMID: 33749834 DOI: 10.1111/jfbc.13690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022]
Abstract
This study evaluates the modulation of inflammatory markers by petroleum ether fraction of Trigonella foenum-graecum L. (PE-TFG) seed extract in ovariectomized rats. The HPTLC method was used for standardization and to quantify the diosgenin in PE-TFG. For testing PE-TFG in rats, the total duration of treatment was 12-weeks, and the rats were sacrificed on week 12. The tissue samples such as blood, liver, heart, and aorta were isolated for testing inflammatory markers such as adiponectin, leptin, PPAR-γ, TNF-α, lipid profile, hepatic markers, antioxidants, and oxidative stress markers. The PE-TFG treatment decreased the elevation of total cholesterol, triglyceride, AST, and ALT. Upon PE-TFG treatment, there was a significant increase in adiponectin and PPAR-γ mRNA expression. Leptin and TNF-α were normal after treatment with PE-TFG seed extract. Further, micro-steatosis of hepatocytes marked glomerular hypertrophy in the kidney and increased thickness of tunica intima and media of common carotid artery was reversed after treatment with PE-TFG. PRACTICAL APPLICATIONS: Trigonella foenum-graecum L. is a curative plant used to treat inflammatory conditions like diabetes, obesity, dyslipidemia, arthritis, cancer, and digestive disorders. In our study, PE-TFG supplementation has a protective effect on OVX-induced inflammation, oxidative stress, mRNA expression of adiponectin and PPAR-γ, hepatic steatosis, and decreased thickness of tunica intima and media of common carotid artery.
Collapse
Affiliation(s)
- Takkella Nagamma
- Department of Biochemistry, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, India
| | - Anjaneyulu Konuri
- Department of Anatomy, Manipal-TATA Medical College, Jamshedpur, Manipal Academy of Higher Education, Manipal, India
| | - Kumar M R Bhat
- Department of Anatomy, Ras Al Khaimah College of Medical Sciences, RAK Medical & Health Science University, Ras Al Khaimah, UAE
| | - Rajalekshmi Maheshwari
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmanabha Udupa
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|