1
|
Dadou S, Altay A, Baydere C, Anouar EH, Türkmenoğlu B, Koudad M, Dege N, Oussaid A, Benchat N, Karrouchi K. Chalcone-based imidazo[2,1- b]thiazole derivatives: synthesis, crystal structure, potent anticancer activity, and computational studies. J Biomol Struct Dyn 2025; 43:261-276. [PMID: 38009853 DOI: 10.1080/07391102.2023.2280756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
In this work, two novel chalcone-based imidazothiazole derivatives ITC-1 and ITC-2 were synthesized and characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry with electrospray ionization, and chemical structure of ITC-1 was confirmed by single-crystal X-ray diffraction. Also, the anticancer activity of ITC-1 and ITC-2 was evaluated. First, antiproliferative activity tests were performed against cancer cells namely, human-derived breast adenocarcinoma (MCF-7), lung carcinoma (A-549), and colorectal adenocarcinoma (HT-29) cell lines, and mouse fibroblast healthy cell line (3T3-L1) by XTT assay. Afterward, mitochondrial membrane disruption (MMP), caspase activity, and apoptosis tests were performed on MCF-7 cells to elucidate the anticancer mechanism of action of the test compounds by flow cytometry analysis. XTT results revealed that both compounds exhibited a very high degree of antiproliferative effects on each tested cancer cell line with very low IC50 values while showing much lower antiproliferation on 3T3-L1 normal cells with much higher IC50 values. Besides, ITC-2 was determined to have a striking cytotoxic power competing with the chemotherapeutic drug carboplatin. Flow cytometry results demonstrated the mitochondrial-mediated apoptotic effects of both compounds through membrane disruption and multi-caspase activation in MCF-7 cells. Finally, molecular docking studies were performed to determine the structural understanding of the test compounds by their interactions on caspase-3 and DNA dodecamer enzymes, respectively. The interactions between the compound and the crystal structure were determined according to parameters such as free binding energies (ΔGBind), Glide score values, and determination of the active binding site. The obtained data suggest that ITC-1 and ITC-2 may be considered remarkable anticancer drug candidates. In addition to molecular docking via in silico approaches, the pharmacokinetic properties of compounds ITC-1 and ITC-2 were calculated using the Schrödinger 2021-2 Qikprop wizard.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Said Dadou
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Cemile Baydere
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mohammed Koudad
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Abdelouahad Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Noureddine Benchat
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2025; 45:164-213. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Rouzi K, Altay A, Bouatia M, Yeniçeri E, Islam MS, Oulmidi A, El Karbane M, Karrouchi K. Novel isoniazid-hydrazone derivatives induce cell growth inhibition, cell cycle arrest and apoptosis via mitochondria-dependent caspase activation and PI3K/AKT inhibition. Bioorg Chem 2024; 150:107563. [PMID: 38885547 DOI: 10.1016/j.bioorg.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
In this study, seven isoniazid-hydrazone derivatives (3a-g) were synthesized and their structures elucidated by chromatographic techniques, and then the antiproliferative effects of these compounds on various cancer cells were tested. The advanced anticancer mechanism of the most potent compound was then investigated. Antiproliferative activities of the synthesized compounds were evaluated on human breast cancer MCF-7, lung cancer A-549, colon cancer HT-29, and non-cancerous mouse fibroblast 3T3-L1 cell lines by XTT assay. Flow cytometry analysis were carried out to determine cell cycle distribution, apoptosis, mitochondrial membrane potential, multi-caspase activity, and expression of PI3K/AKT signaling pathway. The XTT results showed that all the title molecules displayed cytotoxic activity at varying strengths in different dose ranges, and among them, the strongest cytotoxic effect and high selectivity were exerted by 3d against MCF-7 cells with the IC50 value of 11.35 µM and selectivity index of 8.65. Flow cytometry results revealed that compound 3d induced apoptosis through mitochondrial membrane disruption and multi-caspase activation in MCF-7 cells. It also inhibited the cell proliferation via inhibition of expression of PI3K/AKT and arrested the cell cycle at G0/G1 phase. In conclusion, all these data disclosed that among the synthesized compounds, 3d is notable for in vivo anticancer studies.
Collapse
Affiliation(s)
- Khouloud Rouzi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24100 Erzincan, Turkey.
| | - Mustapha Bouatia
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Esma Yeniçeri
- Department of Chemistry, Institute of Science and Technology, Erzincan Binali Yıldırım University, 24002 Erzincan, Turkey
| | - Mohammad Shahidul Islam
- College of Science, Chemistry Department, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Afaf Oulmidi
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Miloud El Karbane
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
4
|
Sulukoğlu EK, Günaydın Ş, Kalın ŞN, Altay A, Budak H. Diffractaic acid exerts anti-cancer effects on hepatocellular carcinoma HepG2 cells by inducing apoptosis and suppressing migration through targeting thioredoxin reductase 1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5745-5755. [PMID: 38308689 PMCID: PMC11329542 DOI: 10.1007/s00210-024-02980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Hepatocellular carcinoma (HCC) represents one of the most common malignant tumors worldwide. Due to the limited number of available drugs and their side effects, the development of new chemotherapeutic strategies for HCC treatment has become increasingly important. This study is aimed at investigating whether diffractaic acid (DA), one of the secondary metabolites of lichen, exhibits a potential anticancer effect on HepG2 cells and whether its anticancer effect is mediated by inhibition of thioredoxin reductase 1 (TRXR1), which is a target of chemotherapeutic strategies due to overexpression in tumor cells including HCC. XTT assay results showed that DA exhibited strong cytotoxicity on HepG2 cells with an IC50 value of 78.07 µg/mL at 48 h. Flow cytometric analysis results revealed that DA displayed late apoptotic and necrotic effects on HepG2 cells. Consistent with these findings, real-time PCR results showed that DA did not alter the BAX/BCL2 ratio in HepG2 cells but upregulated the P53 gene. Moreover, the wound healing assay results revealed a strong anti-migratory effect of DA in HepG2 cells. Real-time PCR and Western blot analyses demonstrated that DA increased TRXR1 gene and protein expression levels, whereas enzyme activity studies disclosed that DA inhibited TRXR1. These findings suggest that DA has an anticancer effect on HepG2 cells by targeting the enzymatic inhibition of TRXR1. In conclusion, DA as a TRXR1 inhibitor can be considered an effective chemotherapeutic agent which may be a useful lead compound for the treatment of HCC.
Collapse
Affiliation(s)
- Emine Karaca Sulukoğlu
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey
- Faculty of Science, Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Şükran Günaydın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, 43100, Kütahya, Turkey
| | - Şeyda Nur Kalın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Altay
- Faculty of Science and Arts, Department of Chemistry, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
5
|
Zhang LL, Huang X, Azam M, Yuan HX, Ma FJ, Cheng YZ, Zhang LP, Sun D. Silver(I) Complexes with Mefenamic Acid and Nitrogen Heterocyclic Ligands: Synthesis, Characterization, and Biological Evaluation. Inorg Chem 2024; 63:12624-12634. [PMID: 38910548 DOI: 10.1021/acs.inorgchem.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Four Ag(I) complexes with mefenamato and nitrogen heterocyclic ligands, [Ag(2-apy)(mef)]2 (1), [Ag(3-apy)(mef)] (2), [Ag2(tmpyz)(mef)2] (3), and {[Ag(4,4'-bipy)(mef)]2(CH3CN)1.5(H2O)2}n (4), (mef = mefenamato, 2-apy = 2-aminopyridine, 3-apy = 3-aminopyridine, tmpyz = 2,3,5,6-tetramethylpyrazine, 4,4'-bipy = 4,4'-bipyridine), were synthesized and characterized. The interactions of these complexes with BSA were investigated by fluorescence spectroscopy, which indicated that these complexes quench the fluorescence of BSA by a static mechanism. The fluorescence data also indicated that the complexes showed good affinity for BSA, and one binding site on BSA was suitable for the complexes. The in vitro cytotoxicity of the four complexes against human cancer cell lines (MCF-7, HepG-2, A549, and MDA-MB-468) and one normal cell line (HTR-8) was evaluated by the MTT assay. Complex 1 displayed high cytotoxic activity against A549 cells. Further studies revealed that complex 1 could enhance the intracellular levels of ROS (reactive oxygen species) in A549 cells, cause cell cycle arrest in the G0/G1 phase, and induce apoptosis in A549 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Lu-Lin Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Xiang Huang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P.O. BOX 2455, Riyadh 11451, Saudi Arabia
| | - Hua-Xin Yuan
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Feng-Jie Ma
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Li-Ping Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, P. R. China
| |
Collapse
|
6
|
Budak B, Kalın ŞN, Yapça ÖE. Antiproliferative, antimigratory, and apoptotic effects of diffractaic and vulpinic acids as thioredoxin reductase 1 inhibitors on cervical cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1525-1535. [PMID: 37658214 DOI: 10.1007/s00210-023-02698-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Cervical cancer is among the most frequently observed cancer types in females. New therapeutic targets are needed because of the side impacts of existing cancer drugs and the inadequacy of treatment methods. Thioredoxin reductase 1 (TrxR1) is often overexpressed in many cancer cells, and targeting TrxR1 has become an attractive target for cancer therapy. This study investigated the anticancer impacts of diffractaic and vulpinic acids, lichen secondary metabolites, on the cervical cancer HeLa cell line. XTT findings demonstrated showed that diffractaic and vulpinic acids suppressed the proliferation of HeLa cells in a dose- and time-dependent manner and IC50 values were 22.52 μg/ml and 66.53 μg/ml at 48 h, respectively. Each of these lichen metabolites significantly suppressed migration. Diffractaic acid showed an increase in both the BAX/BCL2 ratio by qPCR analysis and the apoptotic cell population via flow cytometry analysis on HeLa cells. Concerning vulpinic acid, although it decreased the BAX/BCL2 ratio in this cells, it increased apoptotic cells according to the flow cytometry analysis results. Diffractaic and vulpinic acids significantly suppressed TrxR1 enzyme activity rather than the gene and protein expression levels in HeLa cells. This research demonstrated for the first time, that targeting TrxR1 with diffractaic and vulpinic acids was an effective therapeutic strategy for treating cervical cancer.
Collapse
Affiliation(s)
- Büşra Budak
- Department of Obstetrics and Gynecology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Şeyda Nur Kalın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Ömer Erkan Yapça
- Department of Obstetrics and Gynecology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
7
|
Ameziane El Hassani I, Altay A, Karrouchi K, Yeniçeri E, Türkmenoğlu B, Assila H, Boukharssa Y, Ramli Y, Ansar M. Novel Pyrazole-Based Benzofuran Derivatives as Anticancer Agents: Synthesis, Biological Evaluation, and Molecular Docking Investigations. Chem Biodivers 2023; 20:e202301145. [PMID: 37781955 DOI: 10.1002/cbdv.202301145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
In this work, the design, synthesis, and mechanistic studies of novel pyrazole-based benzofuran derivatives 1-8 as anticancer agents were discussed. Cytotoxic potency of the title compounds was evaluated against the lung carcinoma A-549, human-derived colorectal adenocarcinoma HT-29, breast adenocarcinoma MCF-7 cells as well as mouse fibroblast 3T3-L1 cells using XTT assay. Anticancer mechanistic studies were carried out with flow cytometry. XTT results revealed that all compounds exhibited dose-dependent anti-proliferative activity against the tested cancer cells, and especially compound 2 showed the strongest anti-proliferative activity with an IC50 value of 7.31 μM and the highest selectivity (15.74) on MCF-7 cells. Flow cytometry results confirmed that the cytotoxic power of compound 2 on MCF-7 cells is closely related to mitochondrial membrane damage, caspase activation, and apoptosis orientation. Finally, molecular docking studies were applied to determine the interactions between compound 2 and caspase-3 via in-silico approaches. By molecular docking studies, free binding energy (ΔGBind), docking score, Glide score values as well as amino acid residues in the active binding site were determined. Consequently, these results constitute preliminary data for in vivo anticancer studies and have the potential as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Issam Ameziane El Hassani
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Esma Yeniçeri
- Department of Chemistry, Institute of Science and Technology, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Hamza Assila
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Youness Boukharssa
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - M'hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| |
Collapse
|
8
|
Günaydın Ş, Sulukoğlu EK, Kalın ŞN, Altay A, Budak H. Diffractaic acid exhibits thioredoxin reductase 1 inhibition in lung cancer A549 cells. J Appl Toxicol 2023; 43:1676-1685. [PMID: 37329199 DOI: 10.1002/jat.4505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths all over the world. Therefore, it has gained importance in the development of new chemotherapeutic strategies to identify anticancer agents with low side effects, reliable, high anticancer potential, and specific to lung cancer cells. Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for lung cancer treatment because of its overexpression in tumor cells. Here, we aimed to examine the anticancer effect of diffractaic acid, a lichen secondary metabolite, in A549 cells by comparing it with the commercial chemotherapeutic drug carboplatin and also to investigate whether the anticancer effect of diffractaic acid occurs via TrxR1-targeting. The IC50 value of diffractaic acid on A549 cells was determined as 46.37 μg/mL at 48 h, and diffractaic acid had stronger cytotoxicity than carboplatin in A549 cells. qPCR results revealed that diffractaic acid promoted the intrinsic apoptotic pathway through the upregulation of the BAX/BCL2 ratio and P53 gene in A549 cells, which is consistent with the flow cytometry results. Furthermore, migration analysis results indicated that diffractaic acid impressively suppressed the migration of A549 cells. While the enzymatic activity of TrxR1 was inhibited by diffractaic acid in A549 cells, no changes were seen in the quantitative expression levels of gene and protein. These findings provide fundamental data on the anticancer effect of diffractaic acid on A549 cells targeting TrxR1 activity, suggesting that it could be considered a chemotherapeutic agent for lung cancer therapy.
Collapse
Affiliation(s)
- Şükran Günaydın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Emine Karaca Sulukoğlu
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- Science Faculty, Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Şeyda Nur Kalın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Ahmet Altay
- Faculty of Science and Arts, Department of Chemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Ma FJ, Huang X, Li XY, Tang SL, Li DJ, Cheng YZ, Azam M, Zhang LP, Sun D. Synthesis, structure and biological activity of silver(I) complexes containing triphenylphosphine and non-steroidal anti-inflammatory drug ligands. J Inorg Biochem 2023; 250:112404. [PMID: 39492372 DOI: 10.1016/j.jinorgbio.2023.112404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Two Ag(I) complexes containing triphenylphosphine and non-steroidal anti-inflammatory drug ligands were synthesized and investigated using various spectroscopic studies and single crystal X-ray crystallography. The binding properties of tolfenamic acid, ibuprofen and the two complexes with DNA and BSA were investigated using UV or fluorescence spectroscopy. The results showed that two Ag(I) complexes bound to DNA by the intercalation mode and interacted with BSA using a static quenching procedure. Furthermore, the results of fluorescence titration suggested that the complexes had good affinity for BSA and one binding site close to BSA. The in vitro cytotoxicity of tolfenamic acid, ibuprofen, and the two complexes against four human carcinoma cell lines (MCF-7, HepG-2, A549, and HeLa cells) was tested using an MTT assay. Complex 1 had higher cytotoxicity against HeLa cells. The intracellular reactive oxygen species (ROS) assay showed complex 1 induced the ROS generation in HeLa cells in a concentration dependent manner. Flow cytometry analysis showed complex 1 could suppress the HeLa cells growth during the G0/G1 phase and induce apoptosis in dose-depended manner.
Collapse
Affiliation(s)
- Feng-Jie Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xiang Huang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xue-Ying Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Shi-Li Tang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - De-Jun Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Li-Ping Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, PR China.
| |
Collapse
|
10
|
Beşer BM, Yildirim B. Exploring Biological Interactions: A New Pyrazoline as a Versatile Fluorescent Probe for Energy Transfer and Cell Staining Applications. ChemistryOpen 2023; 12:e202300092. [PMID: 37667461 PMCID: PMC10477408 DOI: 10.1002/open.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
Fluorescent dyes are used in biological systems, because they are highly sensitive and selective. In this work, we investigated the fluorescent probe properties of 2-(5-(pyridin-2-yl)-1H-pyrazol-3-yl) phenol (PYDP) in two media [sodium dodecyl sulfate (SDS) and human serum albumin (HSA)]. Energy transfer parameters, photophysical and thermodynamic parameters of probe were determined. We investigated cytotoxicity of PYDP against colorectal adenocarcinoma cell lines (HT-29), breast cancer cell lines (MCF-7) and 3T3-L1 adipocytes (3T3 L1) cells. The cell staining property of PYDP was monitored using a confocal microscope. The results showed that PYDP binds to HSA, bindings are due to electrostatic/ionic interactions, and the binding process is spontaneous. PYDP was found to exhibit negligible cytotoxicity at high concentrations, and confocal microscope images showed that PYDP stained the cytoplasm of MCF-7 cells.
Collapse
Affiliation(s)
- Burcu Meryem Beşer
- Faculty of Arts and SciencesDepartment of ChemistryErzincan Binali Yıldırım UniversityErzincanTürkiye
| | - Berat Yildirim
- Faculty of Arts and SciencesDepartment of ChemistryErzincan Binali Yıldırım UniversityErzincanTürkiye
| |
Collapse
|
11
|
Movahedi E, Razmazma H, Rezvani A, Ebrahimi A. Binding profile of a mixed-ligand silver(I) complex with DNA and Topoisomerase I. Comput Biol Chem 2023; 103:107831. [PMID: 36822076 DOI: 10.1016/j.compbiolchem.2023.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
A new mixed-ligand Ag(I) complex, [Ag(daf)(phen)]NO3 (daf = 4,5-diazafluoren-9-one and dian = N-(4,5-diazafluoren-9-ylidene)aniline), was synthesized. The elemental analysis, FTIR, 1HNMR, UV-Vis spectroscopy, cyclic voltammetry, and DFT (Density Functional Theory) geometry optimization method were applied in order to predict the Ag(I) complex structure which concluded to a distorted tetrahedral N4 coordination around the Ag(I) center. A detailed in silico analysis of the bioaffinity of the complex to DNA and human DNA-Topoisomerase I was conducted using molecular docking simulations and ONIOM (Our own N-layered Integrated molecular Orbital and molecular Mechanics) techniques. In this overall scenario, the results suggest the dominance of π-π stacking interactions of the heteroaromatic ligands in the intercalating pocket of DNA and the active site of the enzyme and the rational correlation between being a good intercalator and a potent Topoisomerase I inhibitor. In vitro DNA-binding experiments by spectrophotometric, spectrofluorometric, Voltammetric, and viscometric techniques at physiological pH also confirmed the computational results. The complex inhibited MCF-7 cell growth in a dose-dependent manner while being nontoxic on HUVEC normal cells.
Collapse
Affiliation(s)
- Elaheh Movahedi
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Hafez Razmazma
- Laboratory of Computational Quantum Chemistry and Drug Design, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Rezvani
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | - Ali Ebrahimi
- Laboratory of Computational Quantum Chemistry and Drug Design, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
12
|
Kalın ŞN, Altay A, Budak H. Effect of evernic acid on human breast cancer MCF-7 and MDA-MB-453 cell lines via thioredoxin reductase 1: A molecular approach. J Appl Toxicol 2023. [PMID: 36807289 DOI: 10.1002/jat.4451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Thioredoxin reductase 1 (TrxR1) has emerged as an important target for anticancer drug development due to its overexpression in many human tumors including breast cancer. Due to the serious side effects of currently used commercial anticancer drugs, new natural compounds with very few side effects and high efficacy are of great importance in cancer treatment. Lichen secondary metabolites, known as natural compounds, have diverse biological properties, including antioxidant and anticancer activities. Herein, we aimed to determine the potential antiproliferative, antimigratory, and apoptotic effects of evernic acid, a lichen secondary metabolite, on breast cancer MCF-7 and MDA-MB-453 cell lines and afterward to investigate whether its anticancer effect is exerted by TrxR1-targeting. The cytotoxicity results indicated that evernic acid suppressed the proliferation of MCF-7 and MDA-MB-453 cells in a dose-dependent manner and the IC50 values were calculated as 33.79 and 121.40 μg/mL, respectively. Migration assay results revealed the notable antimigratory ability of evernic acid against both cell types. The expression of apoptotic markers Bcl2 associated X, apoptosis regulator, Bcl2 apoptosis regulator, and tumor protein p53 by quantitative real-time polymerase chain reaction and western blot analysis showed that evernic acid did not induce apoptosis in both cell lines, consistent with flow cytometry results. Evernic acid showed its anticancer effect via inhibiting TrxR1 enzyme activity rather than mRNA and protein expression levels in both cell lines. In conclusion, these findings suggest that evernic acid has the potential to be evaluated as a therapeutic agent in breast cancer treatment.
Collapse
Affiliation(s)
- Şeyda Nur Kalın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey.,East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Ahmet Altay
- Faculty of Science and Arts, Department of Chemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| |
Collapse
|
13
|
Demirci S, Alp C, Akşit H, Ulutaş Y, Altay A, Yeniçeri E, Köksal E, Yaylı N. Isolation, characterization and anticancer activity of secondary metabolites from Verbascum speciosum. Chem Biol Drug Des 2023; 101:1273-1282. [PMID: 36756721 DOI: 10.1111/cbdd.14211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Herein, two iridoid glucosides aucubin (1) and ajugol (2), and two phenyl ethanoids, verbascoside (3) and poliumoside (4) were isolated from the methanol extract of the aerial parts of Verbascum speciosum and used to study about their anticancer activity for the first time. The structures of all compounds were elucidated using spectroscopic data (IR, 1D and 2D NMR, LC-TOF/MS). Antiproliferative activities of Aucubun (1) and Verbascoside (3) were tested against A-549 (human colon cancer), MDA-MD-453 (human breast cancer) and 3T3-L1 (mouse fibroblast)cell lines by XTT assay. In addition, the anticarcer mechanism of action of aucubin (1) was investigated on MDA-MB-453 cells for the first time. XTT result showed that both applied compounds exhibited antiproliferative effect at different dose ranges depending on the cancer type, as well as selectivity between cancer and healty cell lines. Flow cytometry analyzes revealed that aucubin (1) exerts its cytotoxic effect in MDA-MB-453 cells by directing cells to early apoptosis and inhibiting the P13K/AKT signaling pathway.
Collapse
Affiliation(s)
- Serpil Demirci
- Department of Medical Services and Techniques, Vocational High School of Health Services, Giresun University, Giresun, Türkiye
| | - Cemalettin Alp
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Hüseyin Akşit
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Yakup Ulutaş
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Esma Yeniçeri
- Erzincan Binali Yıldırım University, Institute of Science and Technology, Erzincan, Türkiye
| | - Ekrem Köksal
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Nurettin Yaylı
- Department of Medical Microbiology, School of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
14
|
Kalın ŞN, Altay A, Budak H. Inhibition of thioredoxin reductase 1 by vulpinic acid suppresses the proliferation and migration of human breast carcinoma. Life Sci 2022; 310:121093. [DOI: 10.1016/j.lfs.2022.121093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
|
15
|
Design, synthesis, anticancer evaluation and molecular docking studies of new imidazo [2, 1-b] thiazole -based chalcones. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02916-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
|
17
|
Caglar S, Altay A, Kuzucu M, Caglar B. In Vitro Anticancer Activity of Novel Co(II) and Ni(II) Complexes of Non-steroidal Anti-inflammatory Drug Niflumic Acid Against Human Breast Adenocarcinoma MCF-7 Cells. Cell Biochem Biophys 2021; 79:729-746. [PMID: 33914261 DOI: 10.1007/s12013-021-00984-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Herein, we report the synthesis, characterization and anticancer activity of six novel complexes of non-steroidal anti-inflammatory drug niflumic acid with Co(II) and Ni(II). In vitro cytotoxicity screening in MCF-7, HepG2 and HT-29 cancer cell lines showed that the complex 3 [Co(nif)2(met)(4-pic)] and complex 6 [Ni(nif)2(met)(4-pic)] among all the complexes exhibited the highest cytotoxicity against MCF-7 cells with IC50 values of 11.14 µM and, 41.47 µM, respectively. Besides, all the complexes exhibited significantly higher selectivity towards mouse fibroblast 3T3L1 cells. Further mechanistic studies with both complexes on MCF-7 cells revealed their cytotoxic action through the mitochondrial-dependent apoptotic pathway causing an increase oxidative/nitrosative stress, decrease in mitochondrial membrane potential (ΔΨm), inducing the multicaspase activation and arresting the cell cycle at S phase. q-PCR analysis resulted in an increase in the expression of the apoptotic marker proteins bax, p53 and caspase-3 and -8 in MCF-7 cells, but a decrease in the expression of antiapoptotic bcl-2 gene. Moreover, both complexes induced the apoptosis through the inhibition of PI3K/Akt signaling pathway by decreasing the expression of PI3K and increasing dephosphorylation form of Akt protein. These results provide a significant contribution to the explanation of the anticancer mechanisms of these complexes in MCF-7 cells.
Collapse
Affiliation(s)
- Sema Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Bulent Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
18
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
19
|
Antimicrobial and Anticancer Application of Silver(I) Dipeptide Complexes. Molecules 2021; 26:molecules26216335. [PMID: 34770744 PMCID: PMC8587849 DOI: 10.3390/molecules26216335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
Three silver(I) dipeptide complexes [Ag(GlyGly)]n(NO3)n (AgGlyGly), [Ag2(GlyAla)(NO3)2]n (AgGlyAla) and [Ag2(HGlyAsp)(NO3)]n (AgGlyAsp) were prepared, investigated and characterized by vibrational spectroscopy (mid-IR), elemental and thermogravimetric analysis and mass spectrometry. For AgGlyGly, X-ray crystallography was also performed. Their stability in biological testing media was verified by time-dependent NMR measurements. Their in vitro antimicrobial activity was evaluated against selected pathogenic microorganisms. Moreover, the influence of silver(I) dipeptide complexes on microbial film formation was described. Further, the cytotoxicity of the complexes against selected cancer cells (BLM, MDA-MB-231, HeLa, HCT116, MCF-7 and Jurkat) and fibroblasts (BJ-5ta) using a colorimetric MTS assay was tested, and the selectivity index (SI) was identified. The mechanism of action of Ag(I) dipeptide complexes was elucidated and discussed by the study in terms of their binding affinity toward the CT DNA, the ability to cleave the DNA and the ability to influence numbers of cells within each cell cycle phase. The new silver(I) dipeptide complexes are able to bind into DNA by noncovalent interaction, and the topoisomerase I inhibition study showed that the studied complexes inhibit its activity at a concentration of 15 μM.
Collapse
|
20
|
Binuclear silver(I) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, characterization, cytotoxic activity and evaluation of cellular mechanism of action. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Rendošová M, Gyepes R, Maruščáková IC, Mudroňová D, Sabolová D, Kello M, Vilková M, Almáši M, Huntošová V, Zemek O, Vargová Z. An in vitro selective inhibitory effect of silver(i) aminoacidates against bacteria and intestinal cell lines and elucidation of the mechanism of action by means of DNA binding properties, DNA cleavage and cell cycle arrest. Dalton Trans 2021; 50:936-953. [PMID: 33350415 DOI: 10.1039/d0dt03332d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel silver(i) aminoacidate complexes {[Ag(HVal)(H2O)(NO3)]}n (AgVal) and {[Ag3(HAsp)2(NO3)]}n·nH2O (AgAsp) were prepared, investigated and fully characterized by vibrational spectroscopy (mid-IR), elemental analysis, thermogravimetric analysis, X-ray crystallography and mass spectrometry. Their stability in D2O and PBS buffer was verified by time-dependent 1H and 13C NMR measurements. Their in vitro antibacterial activity (against pathogenic Staphylococcus aureus CCM4223, Escherichia coli CCM4787) and that against probiotic bacteria Lactobacillus plantarum CCM7102 and Lactobacillus reuteri (L26) were determined and potential dosing concentration was evaluated. The cytotoxicity of both the complexes against intestinal porcine epithelial (IPEC-1) and human epithelial colorectal adenocarcinoma (CaCo-2) cell lines was determined using the colorimetric MTT assay and against human metastatic melanoma (A2058), human pancreatic adenocarcinoma (PaTu 8902), human cervical adenocarcinoma (HeLa), human colorectal carcinoma (HCT116), human leukaemic T cell lymphoma (Jurkat), and human dermal fibroblasts (HDF) using colorimetric MTS assay. The selectivity index (SI) was identified for intestinal cancer (CaCo-2) and healthy (IPEC-1) cells. The mechanism of action of AgVal and AgAsp was further elucidated and discussed by the study of their binding affinity toward the CT DNA, the ability to cleave the supercoiled form of pUC19 DNA and the ability to influence numbers of cells within each cell cycle.
Collapse
Affiliation(s)
- Michaela Rendošová
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Light Stability, Pro-Apoptotic and Genotoxic Properties of Silver (I) Complexes of Metronidazole and 4-Hydroxymethylpyridine against Pancreatic Cancer Cells In Vitro. Cancers (Basel) 2020; 12:cancers12123848. [PMID: 33419296 PMCID: PMC7767315 DOI: 10.3390/cancers12123848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Antimicrobial properties of silver (I) ion and its complexes with metronidazole and 4-hydroxymethylpyridine are well recognized. However, little is known about its anticancer activity toward human pancreatic cancer cells. Our in vitro study revealed that silver (I) ion and its complexes with metronidazole and 4-hydroxymethylpyridine induced pancreatic cancer cells death associated with genotoxic and proapoptotic properties. In turn, the stability of active substances is of crucial importance because it determines the efficacy and applicability in clinical use. Therefore, we also evaluated photostability of silver (I) nitrate and its complexes with metronidazole and 4- hydroxymethylpyridine. Our results showed that studied complexes are more photochemically stable than silver salts, which makes them better candidates for clinical therapy. Abstract Antimicrobial properties of silver (I) ion and its complexes are well recognized. However, recent studies suggest that both silver (I) ion and its complexes possess anticancer activity associated with oxidative stress-induced apoptosis of various cancer cells. In this study, we aimed to investigate whether silver nitrate and its complexes with metronidazole and 4-hydroxymethylpyridine exert anticancer action against human pancreatic cancer cell lines (PANC-1 and 1.2B4). In the study, we compared decomposition speed for silver complexes under the influence of daylight and UV-A (ultraviolet-A) rays. We employed the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide) assay to evaluate the cytotoxicity and the alkaline comet assay to determine genotoxicity of silver nitrate and its complexes. Flow cytometry and the Annexin V-FITC/PI apoptosis detection kit were used to detect the apoptosis of human pancreatic cancer cells. We found a dose dependent decrease of both pancreatic cancer cell line viability after exposure to silver nitrate and its complexes. The flow cytometry analysis confirmed that cell death occurred mainly via apoptosis. We also documented that the studied compounds induced DNA damage. Metronidazole and 4-hydroxymethylpyridine alone did not significantly affect viability and level of DNA damage of pancreatic cancer cell lines. Complex compounds showed better stability than AgNO3, which decomposed slower than when exposed to light. UV-A significantly influences the speed of silver salt decomposition reaction. To conclude, obtained data demonstrated that silver nitrate and its complexes exerted anticancer action against human pancreatic cancer cells.
Collapse
|