1
|
Mu M, Zhang Q, Zhao C, Li X, Chen Z, Sun X, Yu J. 3-Bromopyruvate overcomes cetuximab resistance in human colorectal cancer cells by inducing autophagy-dependent ferroptosis. Cancer Gene Ther 2023; 30:1414-1425. [PMID: 37558749 PMCID: PMC10581902 DOI: 10.1038/s41417-023-00648-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related death worldwide. Cetuximab, in combination with chemotherapy, is effective for treating patients with wild-type KRAS/BRAF metastatic CRC (mCRC). However, intrinsic or acquired drug resistance often limits the use of cetuximab. In this study, we investigated the potential of co-treatment with 3-Bromopyruvate (3-BP) and cetuximab to overcome cetuximab resistance in CRC, both in vitro and in vivo. Our results demonstrated that the co-treatment of 3-BP and cetuximab synergistically induced an antiproliferative effect in both CRC cell lines with intrinsic cetuximab resistance (DLD-1 (KRASG13D/-) and HT29 (BRAFV600E)) and in a cetuximab-resistant cell line derived from Caco-2 with acquired resistance (Caco-2-CR). Further analysis revealed that co-treatment induced ferroptosis, autophagy, and apoptosis. Mechanistically, co-treatment inhibited FOXO3a phosphorylation and degradation and activated the FOXO3a/AMPKα/pBeclin1 and FOXO3a/PUMA pathways, leading to the promotion of ferroptosis, autophagy, and apoptosis in DLD-1 (KRASG13D/-), HT29 (BRAFV600E), and Caco-2-CR cells. In conclusion, our findings suggest that co-treatment with 3-BP and cetuximab could be a promising strategy to overcome cetuximab resistance in human CRC.
Collapse
Affiliation(s)
- Mingchao Mu
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Qin Zhang
- Department of Dermatology, Northwest Hospital, the Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, China
| | - Chenye Zhao
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Xiaopeng Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Zilu Chen
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Xuejun Sun
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| | - Junhui Yu
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
He Y, Chen H, Li W, Xu L, Yao H, Cao Y, Wang Z, Zhang L, Wang D, Zhou D. 3-Bromopyruvate-loaded bismuth sulfide nanospheres improve cancer treatment by synergizing radiotherapy with modulation of tumor metabolism. J Nanobiotechnology 2023; 21:209. [PMID: 37408010 DOI: 10.1186/s12951-023-01970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Radiotherapy (RT) is one of the most mainstream cancer therapeutic modalities. However, due to the lack of specificity of the radiation adopted, both normal and cancerous cells are destroyed indiscriminately. This highlights the crucial need to improve radiosensitization. This study aims to address this issue by constructing a multifunctional nanospheres that can sensitize multiple aspects of radiotherapy. RESULTS Nanospheres containing high atomic element Bi can effectively absorb ionizing radiation and can be used as radiosensitizers. Cell viability after Bi2S3 + X-ray treatment was half that of X-ray treatment alone. On the other hand, exposed 3-bromopyruvate (3BP) could reduce the overactive oxygen (O2) metabolism of tumor cells and alleviate tumor hypoxia, thereby promoting radiation-induced DNA damage. The combination index (CI) of 3BP and Bi2S3-based RT in Bi2S3-3BP + X-ray was determined to be 0.46 with the fraction affected (fa) was 0.5 via Chou-Talalay's isobolographic method, which indicated synergistic effect of 3BP and Bi2S3-based RT after integration into Bi2S3-3BP + X-ray. Under the combined effect of 3BP and RT, autophagy was over-activated through starvation-induced and redox homeostasis dysregulation pathways, which in turn exhibited pro-death effects. In addition, the prepared nanospheres possess strong X-ray attenuation and high near-infrared (NIR) optical absorption, thus eliminating the need for additional functional components and could serve as bimodal contrast agents for computed tomography/photoacoustic (CT/PA) imaging. CONCLUSIONS The rational design of multifunctional nanospheres with the unique properties provided a novel strategy to achieving high therapeutic efficacy in RT. This was accomplished through simultaneous activation of multiple sensitization pathways by increasing ionizing radiation, reducing tumor oxygen consumption, inducing pro-death autophagy, and providing multiple-imaging guidance/monitoring.
Collapse
Affiliation(s)
- Yiman He
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Huawan Chen
- Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Wenbo Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Lu Xu
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Huan Yao
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Liang Zhang
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Dong Wang
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China.
| | - Di Zhou
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China.
| |
Collapse
|
3
|
Singh A, Srivastava P, Verma AK, Arya JK, Rizvi SI. Curcumin displays a potent caloric restriction mimetic effect in an accelerated senescent model of rat. Biol Futur 2023:10.1007/s42977-023-00170-7. [PMID: 37247086 DOI: 10.1007/s42977-023-00170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Curcumin, a strong natural compound with numerous health benefits, is extracted from the Curcuma longa. According to recent research findings, it also acts as a calorie restriction mimetic. We examined established aging biomarkers in erythrocytes and plasma and tested a persistent oral dietary dose of curcumin in young and D-galactose-induced accelerated rat aging models. For four weeks, D-gal (300 mg/kg b.w. subcutaneously) and curcumin (200 mg/kg b.w. oral) were administered simultaneously to test the protective effects of curcumin against D-galactose-induced accelerated aging and oxidative stress. In the accelerated senescent rat model, we discovered a significant rise in protein carbonyl, malonaldehyde (MDA), and advanced oxidation protein products. Increased levels of catalase, superoxide dismutase, ferric-reducing antioxidant potential, and reduced glutathione (GSH) were observed. Our findings reveal that curcumin has characteristics resembling a calorie restriction mimic and can successfully maintain redox equilibrium throughout the aging process in rat erythrocytes and plasma.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Biochemistry, University of Allahabad, Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Parisha Srivastava
- Department of Biochemistry, University of Allahabad, Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Jitendra Kumar Arya
- Department of Biochemistry, University of Allahabad, Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Allahabad, Uttar Pradesh, 211002, India.
| |
Collapse
|
4
|
Arya JK, Kumar R, Tripathi SS, Rizvi SI. 3-Bromopyruvate, a caloric restriction mimetic, exerts a mitohormetic effect to provide neuroprotection through activation of autophagy in rats during aging. Biogerontology 2022; 23:641-652. [PMID: 36048311 DOI: 10.1007/s10522-022-09988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
In the present study, attempts have been made to evaluate the potential role of 3 Bromopyruvate (3-BP) a glycolytic inhibitor and a caloric restriction mimetic (CRM), to exert neuroprotection in rats during aging through modulation of autophagy. Young male rats (4 months), and naturally aged (22 months) male rats were supplemented with 3-BP (30 mg/kg b.w., orally) for 28 days. Our results demonstrate a significant increase in the antioxidant biomarkers (ferric reducing antioxidant potential level, total thiol, superoxide dismutase, and catalase activities) and a decrease in the level of pro-oxidant biomarkers such as protein carbonyl after 3-BP supplementation in brain tissues. A significant increase in reactive oxygen species (ROS) was observed due to the mitohormetic effect of 3-BP supplementation in the treated rats. Furthermore, the 3-BP treatment also enhanced the activities of electron transport chain complexes I and IV in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuroprotective and aging marker genes. RT-PCR data revealed that 3-BP up-regulated the expression of autophagy markers genes (Beclin-1 and LC3 β), sirtuin-1, and neuronal marker gene (NSE), respectively in the aging brain. The results suggest that 3-BP induces a mitohormetic effect through the elevation of ROS which reinforces defensive mechanism(s) targeted at regulating autophagy. These findings suggest that consistently low-dose 3-BP may be beneficial for neuroprotection during aging and age-related disorders.
Collapse
Affiliation(s)
- Jitendra Kumar Arya
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | | | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India.
| |
Collapse
|
5
|
Arya JK, Kumar R, Tripathi SS, Rizvi SI. Hormetic effect of 3-Bromopyruvate on age-induced alterations in erythrocyte membrane transporters and oxidative biomarkers in rats. Rejuvenation Res 2022; 25:122-128. [DOI: 10.1089/rej.2021.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Jitendra Kumar Arya
- University of Allahabad, Department of Biochemistry, allahabad, ALLAHABAD, UTTAR PRADESH, India, 211002
| | - Raushan Kumar
- University of Allahabad, Department of Biochemistry, Allahabad, Uttar Pradesh, India
| | - Shambhoo Sharan Tripathi
- University of Allahabad, Department of Biochemistry, Fauclty of Science, UNIVERSITY OF ALLAHABAD, PRYAGRAJ, Uttar Pradesh, India, 211002
| | - Syed Ibrahim Rizvi
- University of Allahabad, Department of Biochemistry, faculty of Science, Allahabad, Uttar Pradesh, India, 211002
- India
| |
Collapse
|