1
|
Owen N, Toms M, Tian Y, Toualbi L, Richardson R, Young R, Tracey‐White D, Dhami P, Beck S, Moosajee M. Loss of the crumbs cell polarity complex disrupts epigenetic transcriptional control and cell cycle progression in the developing retina. J Pathol 2023; 259:441-454. [PMID: 36656098 PMCID: PMC10601974 DOI: 10.1002/path.6056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
The crumbs cell polarity complex plays a crucial role in apical-basal epithelial polarity, cellular adhesion, and morphogenesis. Homozygous variants in human CRB1 result in autosomal recessive Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP), with no established genotype-phenotype correlation. The associated protein complexes have key functions in developmental pathways; however, the underlying disease mechanism remains unclear. Using the oko meduzym289/m289 (crb2a-/- ) zebrafish, we performed integrative transcriptomic (RNA-seq data) and methylomic [reduced representation bisulphite sequencing (RRBS)] analysis of whole retina to identify dysregulated genes and pathways. Delayed retinal cell specification was identified in both the crb2a-/- zebrafish and CRB1 patient-derived retinal organoids, highlighting the dysfunction of cell cycle modulation and epigenetic transcriptional control. Differential DNA methylation analysis revealed novel hypermethylated pathways involving biological adhesion, Hippo, and transforming growth factor β (TGFβ) signalling. By integrating gene expression with DNA methylation using functional epigenetic modules (FEM), we identified six key modules involving cell cycle control and disturbance of TGFβ, bone morphogenetic protein (BMP), Hippo, and SMAD protein signal transduction pathways, revealing significant interactome hotspots relevant to crb2a function and confirming the epigenetic control of gene regulation in early retinal development, which points to a novel mechanism underlying CRB1-retinopathies. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicholas Owen
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Maria Toms
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Yuan Tian
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Lyes Toualbi
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Rose Richardson
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | - Rodrigo Young
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | | | - Pawan Dhami
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Stephan Beck
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Mariya Moosajee
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
- Department of OphthalmologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Department of GeneticsMoorfields Eye Hospital NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Reis LM, Chassaing N, Bardakjian T, Thompson S, Schneider A, Semina EV. ARHGAP35 is a novel factor disrupted in human developmental eye phenotypes. Eur J Hum Genet 2023; 31:363-367. [PMID: 36450800 PMCID: PMC9995503 DOI: 10.1038/s41431-022-01246-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
ARHGAP35 has known roles in cell migration, invasion and division, neuronal morphogenesis, and gene/mRNA regulation; prior studies indicate a role in cancer in humans and in the developing eyes, neural tissue, and renal structures in mice. We identified damaging variants in ARHGAP35 in five individuals from four families affected with anophthalmia, microphthalmia, coloboma and/or anterior segment dysgenesis disorders, together with variable non-ocular phenotypes in some families including renal, neurological, or cardiac anomalies. Three variants affected the extreme C-terminus of the protein, with two resulting in a frameshift and C-terminal extension and the other a missense change in the Rho-GAP domain; the fourth (nonsense) variant affected the middle of the gene and is the only allele predicted to undergo nonsense-mediated decay. This study implicates ARHGAP35 in human developmental eye phenotypes. C-terminal clustering of the identified alleles indicates a possible common mechanism for ocular disease but requires further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France
- Platerforme AURAGEN, Lyon, France
| | | | - Samuel Thompson
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | | | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA.
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Jauss RT, Schließke S, Abou Jamra R. Routine Diagnostics Confirm Novel Neurodevelopmental Disorders. Genes (Basel) 2022; 13:2305. [PMID: 36553572 PMCID: PMC9778535 DOI: 10.3390/genes13122305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Routine diagnostics is biased towards genes and variants with satisfactory evidence, but rare disorders with only little confirmation of their pathogenicity might be missed. Many of these genes can, however, be considered relevant, although they may have less evidence because they lack OMIM entries or comprise only a small number of publicly available variants from one or a few studies. Here, we present 89 individuals harbouring variants in 77 genes for which only a small amount of public evidence on their clinical significance is available but which we still found to be relevant enough to be reported in routine diagnostics. For 21 genes, we present case reports that confirm the lack or provisionality of OMIM associations (ATP6V0A1, CNTN2, GABRD, NCKAP1, RHEB, TCF7L2), broaden the phenotypic spectrum (CC2D1A, KCTD17, YAP1) or substantially strengthen the confirmation of genes with limited evidence in the medical literature (ADARB1, AP2M1, BCKDK, BCORL1, CARS2, FBXO38, GABRB1, KAT8, PRKD1, RAB11B, RUSC2, ZNF142). Routine diagnostics can provide valuable information on disease associations and support for genes without requiring tremendous research efforts. Thus, our results validate and delineate gene-disorder associations with the aim of motivating clinicians and scientists in diagnostic departments to provide additional evidence via publicly available databases or by publishing short case reports.
Collapse
Affiliation(s)
- Robin-Tobias Jauss
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | | | | |
Collapse
|
4
|
DeYoung C, Guan B, Ullah E, Blain D, Hufnagel RB, Brooks BP. De novo frameshift mutation in YAP1 associated with bilateral uveal coloboma and microphthalmia. Ophthalmic Genet 2022; 43:513-517. [PMID: 35318877 PMCID: PMC11610107 DOI: 10.1080/13816810.2022.2028299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/05/2021] [Accepted: 01/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Uveal colobomata are eye defects that result from failure of the optic fissure of the neuroectoderm-derived optic cup to close between weeks 5-7 of fetal life. Mutations in YAP1 have previously been linked to uveal coloboma. We present the clinical features and genetic basis of a one-year-old male with bilateral uveal colobomata. MATERIALS AND METHODS Clinical features were gathered from an age-appropriate evaluation and retrospectively from clinical records. DNA samples were collected from the proband, his uncle (who also had coloboma), both parents, and one sibling. Whole-genome sequencing of the coding regions and intron-exon boundaries confirmed a mutation in the proband. These genetic findings were verified using the Sanger method of DNA sequencing. RESULTS The proband is a male with congenital bilateral colobomata (iris/retina/nerve), reduced vision, nystagmus with null point, bilateral microcornea, right microphthalmia, possible mild right hemifacial microsomia, a tubular nose, possible spina bifida occulta, and astigmatism. Whole-genome sequencing confirmed a heterozygous YAP1 frameshift mutation NM_001130145.3:c.178dupG p.(Asp60GlyfsTer52) in the proband. This mutation was absent in all other tested family members. CONCLUSIONS We report a de novo mutation in YAP1 that likely results in nonsense-mediated decay. Given the association with YAP1 haploinsufficiency and colobomatous microphthalmia, this novel variant provides a molecular diagnosis for the proband. Further insight into YAP1 mutations may have implications in the prevention/treatment of uveal coloboma and other syndromic disorders.
Collapse
Affiliation(s)
- Charles DeYoung
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Guan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ehsan Ullah
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Yang Y, Jiang X, Li X, Sun K, Zhu X, Zhou B. Specific ablation of Hippo signalling component Yap1 in retinal progenitors and Müller cells results in late onset retinal degeneration. J Cell Physiol 2022; 237:2673-2689. [PMID: 35533255 DOI: 10.1002/jcp.30757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Yes-associated protein (YAP) is a major component of the Hippo pathway involved in development, growth, repair and homeostasis. Nonsense YAP1 mutations in humans result in autosomal dominant coloboma. Here, we generated a conditional knockout mouse model in which Yap1 was specifically deleted in embryonic retinal progenitor cells (RPCs) and in mature Müller cells using a Chx10-Cre driver. Our data demonstrated that the conditional ablation of Yap1 in embryonic RPCs does not prevent normal retinal development and caused no gross changes in retinal structure during embryonic and early postnatal life. Nevertheless, Yap1 deficient in retinal Müller cells in adult mice leads to impaired visual responses and extensive late-onset retinal degeneration, characterized by reduced cell number in all retinal layers. Immunofluorescence data further revealed the degeneration and death of rod and cone photoreceptors, bipolar cells, horizontal cells, amacrine cells and ganglion cells to varying degrees in aged knockout mice. Moreover, alteration of glial homeostasis and reactive gliosis were also observed. Finally, cell proliferation and TUNEL assay revealed that the broad retinal degeneration is mainly caused by enhanced apoptosis in late period. Together, this work uncovers that YAP is essential for the normal vision and retinal maintenance, highlighting the crucial role of YAP in retinal function and homeostasis.
Collapse
Affiliation(s)
- Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai, China
| | - Xiaoyan Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiao Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Kuanxiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Departemnt of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Bo Zhou
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Lu Q, Zhang Y, Kasetti RB, Gaddipati S, Cvm NK, Borchman D, Li Q. Heterozygous Loss of Yap1 in Mice Causes Progressive Cataracts. Invest Ophthalmol Vis Sci 2021; 61:21. [PMID: 33085740 PMCID: PMC7585397 DOI: 10.1167/iovs.61.12.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Yap1 encodes an evolutionarily conserved transcriptional coactivator and functions as a down-stream effector of the Hippo signaling pathway that controls tissue size and cell growth. Yap1 contributes to lens epithelial development. However, the effect of Yap1 haplodeficiency on the lens epithelium and its role in the development of cataracts has not been reported. The aim of the current study is to investigate Yap1 function and its regulatory mechanisms in lens epithelial cells (LECs). Methods Lens phenotypes were investigated in Yap1 heterozygous mutant mice by visual observation and histological and biochemical methods. Primary LEC cultures were used to study regulatory molecular mechanism. Results The heterozygous inactivation of Yap1 in mice caused cataracts during adulthood with defective LEC phenotypes. Despite a normal early development of the eye including the lens, the majority of Yap1 heterozygotes developed cataracts in the first six months of age. Cataract was preceded by multiple morphological defects in the lens epithelium, including decreased cell density and abnormal cell junctions. The low LEC density was coincident with reduced LEC proliferation. In addition, expression of the Yap1 target gene Crim1 was reduced in the Yap1+/− LEC, and overexpression of Crim1 restored Yap1+/− LEC cell proliferation in vitro. Conclusions Homozygosity of the Yap1 gene was critical for adequate Crim1 expression needed to maintain the constant proliferation of LEC and to maintain a normal-sized lens. Yap1 haplodeficiency leads to cataracts.
Collapse
Affiliation(s)
- Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Yingnan Zhang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Ramesh Babu Kasetti
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Subhash Gaddipati
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Naresh Kumar Cvm
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States
| |
Collapse
|
7
|
Masson C, García-García D, Bitard J, Grellier ÉK, Roger JE, Perron M. Yap haploinsufficiency leads to Müller cell dysfunction and late-onset cone dystrophy. Cell Death Dis 2020; 11:631. [PMID: 32801350 PMCID: PMC7429854 DOI: 10.1038/s41419-020-02860-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Hippo signalling regulates eye growth during embryogenesis through its effectors YAP and TAZ. Taking advantage of a Yap heterozygous mouse line, we here sought to examine its function in adult neural retina, where YAP expression is restricted to Müller glia. We first discovered an unexpected temporal dynamic of gene compensation. At postnatal stages, Taz upregulation occurs, leading to a gain of function-like phenotype characterised by EGFR signalling potentiation and delayed cell-cycle exit of retinal progenitors. In contrast, Yap+/- adult retinas no longer exhibit TAZ-dependent dosage compensation. In this context, Yap haploinsufficiency in aged individuals results in Müller glia dysfunction, late-onset cone degeneration, and reduced cone-mediated visual response. Alteration of glial homeostasis and altered patterns of cone opsins were also observed in Müller cell-specific conditional Yap-knockout aged mice. Together, this study highlights a novel YAP function in Müller cells for the maintenance of retinal tissue homeostasis and the preservation of cone integrity. It also suggests that YAP haploinsufficiency should be considered and explored as a cause of cone dystrophies in human.
Collapse
Affiliation(s)
- Christel Masson
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France.
| | - Diana García-García
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France
| | - Juliette Bitard
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France
| | - Élodie-Kim Grellier
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France.
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France.
| |
Collapse
|
8
|
Kakiuchi-Kiyota S, Schutten MM, Zhong Y, Crawford JJ, Dey A. Safety Considerations in the Development of Hippo Pathway Inhibitors in Cancers. Front Cell Dev Biol 2019; 7:156. [PMID: 31475147 PMCID: PMC6707765 DOI: 10.3389/fcell.2019.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/25/2019] [Indexed: 01/04/2023] Open
Abstract
The Hippo pathway is a critical regulator of cell and organ growth and has emerged as a target for therapeutic intervention in cancers. Its signaling is thought to play an important role in various physiological processes including homeostasis and tissue regeneration. To date there has been limited information about potential pharmacology-related (on-target) safety liabilities of Hippo pathway inhibitors in the context of cancer indications. Herein, we review data from human genetic disorders and genetically engineered rodent models to gain insight into safety liabilities that may emerge from the inhibition of Hippo pathway. Germline systemic deletion of murine Hippo pathway effectors (Yap, Taz, and Teads) resulted in embryonic lethality or developmental phenotypes. Mouse models with tissue-specific deletion (or mutant overexpression) of the key effectors in Hippo pathways have indicated that, at least in some tissues, Hippo signaling may be dispensable for physiological homeostasis; and appears to be critical for regeneration upon tissue damage, indicating that patients with underlying comorbidities and/or insults caused by therapeutic agents and/or comedications may have a higher risk. Caution should be taken in interpreting phenotypes from tissue-specific transgenic animal models since some tissue-specific promoters are turned on during development. In addition, therapeutic agents may result in systemic effects not well-predicted by animal models with tissue-specific gene deletion. Therefore, the development of models that allows for systemic deletion of Yap and/or Taz in adult animals will be key in evaluating the potential safety liabilities of Hippo pathway modulation. In this review, we focus on potential challenges and strategies for targeting the Hippo pathway in cancers.
Collapse
Affiliation(s)
- Satoko Kakiuchi-Kiyota
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, United States
| | - Melissa M Schutten
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, United States
| | - Yu Zhong
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, United States
| | - James J Crawford
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA, United States
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
9
|
An update on the genetics of ocular coloboma. Hum Genet 2019; 138:865-880. [PMID: 31073883 DOI: 10.1007/s00439-019-02019-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 04/19/2019] [Indexed: 01/04/2023]
Abstract
Ocular coloboma is an uncommon, but often severe, sight-threatening condition that can be identified from birth. This congenital anomaly is thought to be caused by maldevelopment of optic fissure closure during early eye morphogenesis. It has been causally linked to both inherited (genetic) and environmental influences. In particular, as a consequence of work to identify genetic causes of coloboma, new molecular pathways that control optic fissure closure have now been identified. Many more regulatory mechanisms still await better understanding to inform on the development of potential therapies for patients with this malformation. This review provides an update of known coloboma genes, the pathways they influence and how best to manage the condition. In the age of precision medicine, determining the underlying genetic cause in any given patient is of high importance.
Collapse
|
10
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
11
|
Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia-microphthalmia. Hum Genet 2018; 138:831-846. [PMID: 30374660 DOI: 10.1007/s00439-018-1949-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
As new genes for A/M are identified in the genomic era, the number of syndromes associated with A/M has greatly expanded. In this review, we provide a brief synopsis of the clinical presentation and molecular genetic etiology of previously characterized pathways involved in A/M, including the Sex-determining region Y-box 2 (SOX2), Orthodenticle Homeobox 2 (OTX2) and Paired box protein-6 (PAX6) genes, and the Stimulated by retinoic acid gene 6 homolog (STRA6), Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3), and RA Receptor Beta (RARβ) genes that are involved in retinoic acid synthesis. Less common genetic causes of A/M, including genes involved in BMP signaling [Bone Morphogenetic Protein 4 (BMP4), Bone Morphogenetic Protein 7 (BMP7) and SPARC-related modular calcium-binding protein 1 (SMOC1)], genes involved in the mitochondrial respiratory chain complex [Holocytochrome c-type synthase (HCCS), Cytochrome C Oxidase Subunit 7B (COX7B), and NADH:Ubiquinone Oxidoreductase subunit B11 (NDUFB11)], the BCL-6 corepressor gene (BCOR), Yes-Associated Protein 1 (YAP1) and Transcription Factor AP-2 Alpha (TFAP2α), are more briefly discussed. We also review several recently described genes and pathways associated with A/M, including Smoothened (SMO) that is involved in Sonic hedgehog (SHH) signaling, Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) and Solute carrier family 25 member 24 (SLC25A24), emphasizing phenotype-genotype correlations and shared pathways where relevant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco Room RH384C, 1550 4th St, San Francisco, CA, 94143-2711, USA.
| |
Collapse
|
12
|
Lee M, Goraya N, Kim S, Cho SH. Hippo-yap signaling in ocular development and disease. Dev Dyn 2018; 247:794-806. [PMID: 29532607 PMCID: PMC5980750 DOI: 10.1002/dvdy.24628] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The Hippo-Yes associated protein (Yap) pathway plays an important role in organ size control by regulating cell proliferation, apoptosis, and stem cell renewal. Hippo-Yap signaling also functions at the level of cellular development in a variety of organs through its effects on cell cycle control, cell survival, cell polarity, and cell fate. Because of its important roles in normal development and homeostasis, abnormal regulation of this pathway has been shown to lead to pathological outcomes such as tissue overgrowth, tumor formation, and abnormal organogenesis, including ocular-specific disorders. In this review, we summarize how normal and perturbed control of Yap signaling is implicated in ocular development and disease Developmental Dynamics 247:794-806, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Lee
- Temple University Lewis Katz School of Medicine, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| | - Navneet Goraya
- Temple University Lewis Katz School of Medicine, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| |
Collapse
|
13
|
Holt R, Ceroni F, Bax DA, Broadgate S, Diaz DG, Santos C, Gerrelli D, Ragge NK. New variant and expression studies provide further insight into the genotype-phenotype correlation in YAP1-related developmental eye disorders. Sci Rep 2017; 7:7975. [PMID: 28801591 PMCID: PMC5554234 DOI: 10.1038/s41598-017-08397-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
YAP1, which encodes the Yes-associated protein 1, is part of the Hippo pathway involved in development, growth, repair and homeostasis. Nonsense YAP1 mutations have been shown to co-segregate with autosomal dominantly inherited coloboma. Therefore, we screened YAP1 for variants in a cohort of 258 undiagnosed UK patients with developmental eye disorders, including anophthalmia, microphthalmia and coloboma. We identified a novel 1 bp deletion in YAP1 in a boy with bilateral microphthalmia and bilateral chorioretinal coloboma. This variant is located in the coding region of all nine YAP1 spliceforms, and results in a frameshift and subsequent premature termination codon in each. The variant is predicted to result in the loss of part of the transactivation domain of YAP1, and sequencing of cDNA from the patient shows it does not result in nonsense mediated decay. To investigate the role of YAP1 in human eye development, we performed in situ hybridisation utilising human embryonic tissue, and observed expression in the developing eye, neural tube, brain and kidney. These findings help confirm the role of YAP1 and the Hippo developmental pathway in human eye development and its associated anomalies and demonstrate its expression during development in affected organ systems.
Collapse
Affiliation(s)
- R Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - F Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - D A Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - S Broadgate
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - D Gold Diaz
- Institute of Child Health, University College London, London, UK
| | - C Santos
- Institute of Child Health, University College London, London, UK
| | - D Gerrelli
- Institute of Child Health, University College London, London, UK
| | - N K Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK. .,Clinical Genetics Unit, West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|