1
|
Lee YJ, Jeong HC, Kim JH, Jo DH. Clinical Characterization, Natural History, and Detailed Phenotyping of NMNAT1-Associated Leber Congenital Amaurosis. Am J Ophthalmol 2024:S0002-9394(24)00582-8. [PMID: 39710161 DOI: 10.1016/j.ajo.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE To characterize the clinical phenotype and disease progression in patients with NMNAT1-associated Leber congenital amaurosis (LCA) within the Korean population. DESIGN Retrospective, observational case series. SUBJECTS Fourteen patients with LCA with biallelic variants of NMNAT1 at a single tertiary referral center. METHODS Electronic medical records were reviewed for medical history, ophthalmic examinations, and molecular diagnoses, both cross-sectionally and longitudinally. MAIN OUTCOME MEASURES Ophthalmic examination findings were evaluated and retinal phenotypic characteristics were assessed using multimodal imaging. RESULTS All patients exhibited early-onset, rapidly progressive bilateral retinal degeneration with pronounced central involvement. The condition was characterized by multiple atrophic lesions that coalesced into a large central retinal scar by age 2. The condition stabilized around 4 years of age. Fluorescein angiography demonstrated central hypofluorescence with visible choroidal vasculature. Optical coherence tomography showed significant retinal thinning, outer retinal layer disruption, and retinal pigment epithelial atrophy. Most patients maintained light perception vision or better, with minimal deterioration of visual acuity after the age of 2. All patients were hyperopic and exhibited undetectable electroretinography and visual-evoked potential responses. CONCLUSIONS NMNAT1-associated LCA is characterized by severe, early-onset retinal degeneration with rapid progression, followed by stabilization. This distinct temporal pattern of disease progression suggests a potential therapeutic window in early childhood, emphasizing the importance of early diagnosis and regular monitoring for potential interventions.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyun Chul Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jeong Hun Kim
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2024:10.1007/s12015-024-10802-7. [PMID: 39422807 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Sallum JMF, Pellissari MC, Carreiro LR, de Vasconcellos CFC. Screening for Autism Spectrum Disorder in Children and Adolescents With Leber's Congenital Amaurosis. Am J Ophthalmol 2024; 265:257-274. [PMID: 38777102 DOI: 10.1016/j.ajo.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To investigate autism spectrum disorder (ASD) indicators in children with Leber congenital amaurosis (LCA). STUDY DESIGN Cross-sectional, prospective, and correlational study. METHODS Setting: It was conducted at the Institute of Ocular Genetics, the Department of Ophthalmology at Federal University of São Paulo (UNIFESP), and the Autism Spectrum Disorder Laboratory, in São Paulo, Brazil. PATIENT POPULATION Participants included patients aged 2 to 16 years with LCA confirmed by genetic testing. There were 20 individuals with ciliopathies (LCA cilio) and 26 with other gene mutations (LCA other). As intervention, the instrument used for ASD screening was the Autism Behavior Checklist (ABC). Marginal descriptive analyses, non-parametric tests, and a linear regression model were conducted. The main outcomes were the scores on the tests correlated with clinical variables. RESULTS Of the 46 participants, 6 had ASD scores. There was no statistically significant correlation between the different groups (LCA cilio and LCA other) (p = 0.438). There was no statistically significant correlation between age and ASD (p = 0.308). However, there was a statistically significant correlation between visual acuity and ASD (p = 0.008) and between male gender and ASD (p = 0.025). CONCLUSIONS This study suggests that there is no correlation between LCA cilio, LCA other and ASD. These findings bring new insights to the existing literature, which previously lacked robust data on the relationship between LCA and ASD. These data demonstrate that visual acuity plays a crucial role in the development of children with visual impairment as poorer visual acuity is associated with a higher incidence of ASD. Based on this study, early interventions can be designed, especially for individuals without light perception, with the aim of maximizing their developmental outcomes. Furthermore, such data indicates that any improvement in visual acuity outcomes in treatment clinical trials become relevant for child development. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- From the Department of Ophthalmology, Federal University of São Paulo-UNIFESP (JMFS, CFCdV, MCP), São Paulo, SP, Brazil.
| | - Marina Cruz Pellissari
- From the Department of Ophthalmology, Federal University of São Paulo-UNIFESP (JMFS, CFCdV, MCP), São Paulo, SP, Brazil
| | - Luiz Renato Carreiro
- Postgraduate Program in Human Development Sciences, Mackenzie Presbyterian University-Mackenzie (LRC), São Paulo, SP, Brazil
| | | |
Collapse
|
4
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Abstract
Optical coherence tomography (OCT) is widely applied in diagnosis and management of retina diseases particularly macular diseases in adult retina practices. However, it has been under-utilized in pediatric retinal diseases especially in neonates and infants. Utilization of OCT in primary macular diseases in this age group is also uncommon and is less reported. Challenges involved in image acquisition and limitations with available devices technique can explain the limited research and accurate data availability in the literature in this field. Purpose of this review article is to summarize the use of OCT and its importance in various infantile retinal pathologies such as vascular diseases, tumors, retinal dystrophies, and optic nerve pathologies with primary focus on neonates and infants, along with infant choroid. In addition, we also discuss about future directions including OCT angiography for infants.
Collapse
Affiliation(s)
- Sushma Jayanna
- Consultant Ophthalmologist, Department of Srimathi Kannuri Santhamma Center of Vitreoretinal Eye Disease, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Subhadra Jalali
- Consultant Ophthalmologist, Department of Srimathi Kannuri Santhamma Center of Vitreoretinal Eye Disease, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Tapas R Padhi
- Consultant Ophthalmologist, Department of Retina and Vitreous, Mithu Tulasi Chanrai Campus, Bhubaneswar, LV Prasad Eye Institute, India
| | - Komal Agarwal
- Consultant Ophthalmologist, Department of Srimathi Kannuri Santhamma Center of Vitreoretinal Eye Disease, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Jay Chhablani
- University of Pittsburgh, UPMC Eye Center, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Huang CH, Yang CM, Yang CH, Hou YC, Chen TC. Leber's Congenital Amaurosis: Current Concepts of Genotype-Phenotype Correlations. Genes (Basel) 2021; 12:genes12081261. [PMID: 34440435 PMCID: PMC8392113 DOI: 10.3390/genes12081261] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Leber’s congenital amaurosis (LCA), one of the most severe inherited retinal dystrophies, is typically associated with extremely early onset of visual loss, nystagmus, and amaurotic pupils, and is responsible for 20% of childhood blindness. With advances in molecular diagnostic technology, the knowledge about the genetic background of LCA has expanded widely, while disease-causing variants have been identified in 38 genes. Different pathogenetic mechanisms have been found among these varieties of genetic mutations, all of which result in the dysfunction or absence of their encoded proteins participating in the visual cycle. Hence, the clinical phenotypes also exhibit extensive heterogenicity, including the course of visual impairment, involvement of the macular area, alteration in retinal structure, and residual function of the diseased photoreceptor. By reviewing the clinical course, fundoscopic images, optical coherent tomography examination, and electroretinogram, genotype-phenotype correlations could be established for common genetic mutations in LCA, which would benefit the timing of the diagnosis and thus promote early intervention. Gene therapy is promising in the management of LCA, while several clinical trials are ongoing and preliminary success has been announced, focusing on RPE65 and other common disease-causing genes. This review provides an update on the genetics, clinical examination findings, and genotype-phenotype correlations in the most well-established causative genetic mutations of LCA.
Collapse
Affiliation(s)
- Chu-Hsuan Huang
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan; (C.-H.H.); (Y.-C.H.)
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Chih Hou
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan; (C.-H.H.); (Y.-C.H.)
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Correspondence: ; Tel.: +886-2-23123456
| |
Collapse
|
7
|
Clinical exome sequencing facilitates the understanding of genetic heterogeneity in Leber congenital amaurosis patients with variable phenotype in southern India. EYE AND VISION 2021; 8:20. [PMID: 33957996 PMCID: PMC8101128 DOI: 10.1186/s40662-021-00243-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
Background Leber congenital amaurosis (LCA), primarily characterized by retinal degeneration is the most severe form of inherited retinal dystrophy (IRD) responsible for congenital blindness. The presence of phenotypic heterogeneity makes the diagnosis of LCA challenging, especially in the absence of pronounced disease pathognomonic, yet it can be well comprehended by employing molecular diagnosis. Therefore, the present study aimed to reveal the causative mutations in ten LCA patients with variable phenotypes using clinical exome sequencing (CES). Methods CES was performed in ten unrelated LCA patients. Ophthalmic information and family history of all patients were obtained to make a meaningful interpretation. The clinical exome data was analyzed and prioritized using a bioinformatics pipeline to identify mutations, which was further validated by Sanger sequencing. Segregation analysis was also performed on available family members. Results CES led to the identification of causative mutations in nine LCA patients. Seven patients harbored a mutation in six LCA candidate genes, including RPE65, LCA5 (n = 2), CRX, PRPH2, CEP290, and ALMS1, while two patients possess a mutation in IFT80 and RP1, known to cause other diseases. Three novel mutations in LCA5 (c.1823del), CRX (c.848del) and CEP290 (c.2483G > T) were identified. The current study reports for the first time, a mutation in PRPH2, CEP290, and ALMS1 from the Indian population. Additionally, we observed a novel association of LCA phenotype with IFT80 known to cause Jeune syndrome. Based on the genetic finding, the patient AS09, who harbored a mutation in the RP1 gene, was re-diagnosed with early-onset retinitis pigmentosa. Conclusion In conclusion, the results underline the importance of CES in clinically diagnosed LCA patients with variable phenotypes. The correlation between mutations in candidate genes and clinical phenotypes, helps to refine the clinical diagnosis. However, molecular evaluation with a larger cohort of LCA patients is needed for better understanding of the mutational spectrum in southern India. Supplementary Information The online version contains supplementary material available at 10.1186/s40662-021-00243-5.
Collapse
|
8
|
Leroy BP, Birch DG, Duncan JL, Lam BL, Koenekoop RK, Porto FBO, Russell SR, Girach A. LEBER CONGENITAL AMAUROSIS DUE TO CEP290 MUTATIONS-SEVERE VISION IMPAIRMENT WITH A HIGH UNMET MEDICAL NEED: A Review. Retina 2021; 41:898-907. [PMID: 33595255 PMCID: PMC8078118 DOI: 10.1097/iae.0000000000003133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Leber congenital amaurosis due to CEP290 mutations (LCA10) is an inherited retinal disease that often results in severe visual impairment or blindness in early childhood. Currently, there are no approved treatments, highlighting the considerable unmet medical need associated with LCA10. We aimed to review the clinical characteristics of LCA10, its impact on patients and society, and the investigational treatment strategies currently in development. METHODS Review of the current literature. RESULTS LCA10 is an autosomal recessive ciliopathy, for which the CEP290 intronic variant c.2991+1655A>G (p.Cys998X) is the most common mutation. Usually diagnosed in early childhood, most patients with LCA10 have severe visual impairment during their first decade of life, which significantly affects the quality of life and development. LCA10 also has a significant societal burden (direct and indirect costs). RNA editing using antisense oligonucleotides or Staphylococcus aureus CRISPR-associated protein-9 nuclease is currently under investigation for treatment of p.Cys998X LCA10. Specifically, the antisense oligonucleotide therapy QR-110 (sepofarsen) has demonstrated encouraging safety and efficacy data in a first-in-human trial; a phase 3 clinical trial is ongoing. CONCLUSION Interventions that can preserve or improve vision in patients with LCA10 have considerable potential to improve the patient quality of life and reduce burden of disease.
Collapse
Affiliation(s)
- Bart P. Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David G. Birch
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Retina Foundation of the Southwest, Dallas, Texas
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Byron L. Lam
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Robert K. Koenekoop
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Fernanda B. O. Porto
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stephen R. Russell
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa; and
| | | |
Collapse
|
9
|
O'Hare F, Edwards TL, Hu ML, Hickey DG, Zhang AC, Wang JH, Liu Z, Ayton LN. An optometrist's guide to the top candidate inherited retinal diseases for gene therapy. Clin Exp Optom 2021; 104:431-443. [PMID: 33689629 DOI: 10.1080/08164622.2021.1878851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
This review presents the phenotypic and genotypic profiles of a select group of inherited retinal diseases (IRDs) that are currently the focus of retinal gene therapy trials globally. Research progress in IRD treatment trials may soon lead to their availability in Australia and New Zealand, as either approved treatment or a clinical trial. The salient clinical characteristics of retinitis pigmentosa-the largest IRD category-are highlighted, with specific reference to RPE65-associated Leber congenital amaurosis, followed by other specific IRDs, namely choroideremia and ABCA4-associated Stargardt disease. These IRDs are selected based on their candidacy for gene therapy. Guidance on the clinical diagnostic tests that support each of these diagnoses will be presented. More broadly, the most useful structure and function measures to monitor IRD progression is discussed, along with the key assessments that offer differential diagnostic insight. This review is intended to be a clinical guide for optometrists, to assist in assessment and management of individuals who may be eligible for current and future gene therapies. A companion article in this issue will provide an overview of the basic principles of gene therapy and its development as a new treatment for inherited retinal diseases.
Collapse
Affiliation(s)
- Fleur O'Hare
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Monica L Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Alexis C Zhang
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Zhengyang Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Lauren N Ayton
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Sallum JMF, Motta FL, Arno G, Porto FBO, Resende RG, Belfort R. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:728-752. [PMID: 32865313 DOI: 10.1002/ajmg.c.31828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD) are severe inherited retinal dystrophy that can cause deep blindness childhood. They represent 5% of all retinal dystrophies in the world population and about 10% in Brazil. Clinical findings and molecular basis of syndromic and nonsyndromic LCA/EORD in a Brazilian sample (152 patients/137 families) were studied. In this population, 15 genes were found to be related to the phenotype, 38 new variants were detected and four new complex alleles were discovered. Among 123 variants found, the most common were CEP290: c.2991+1655A>G, CRB1: p.Cys948Tyr, and RPGRIP1: exon10-18 deletion.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil.,Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Gumus E, Ozgur A. A Novel AIPL1 Nonsense Mutation: Case Report of Three Siblings Diagnosed with Leber Congenital Amaurosis. Fetal Pediatr Pathol 2020; 39:251-258. [PMID: 31342828 DOI: 10.1080/15513815.2019.1644687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Leber congenital amaurosis (LCA) is a subgroup of early onset retinal dystrophy, manifesting with early or congenital visual loss, wandering nystagmus, amaurotic pupils, oculodigital sign, reduced retinal thickness on optical coherence tomography and abnormal electroretinogram. Today, mutations of about 25 genes account for 80% of individuals with LCA. The AIPL1 mutations causing LCA type 4 account for about 5-10% of this group. Case Report: Three affected siblings with vision loss, nystagmus, cataracts, stage 4 keratoconus, retinal abnormalities (black spots), lack of glaucoma, and dysmorphic features from a consanguineous marriage had LCA type 4 with a novel homozygous missense mutations of AIPL1(c.862 C > T). Conclusion: Cortical cataracts, stage 4 keratoconus, retinal black spots, and lack of glaucoma along with mutations of AIPL1 (c.862 C > T) can be present in LCA type 4.
Collapse
Affiliation(s)
- Evren Gumus
- Medical Genetics, Harran Universitesi Tip Fakultesi, Sanliurfa, Turkey
| | - Armagan Ozgur
- Sanliurfa Research and Training Hospital, Sanliurfa, Turkey
| |
Collapse
|
12
|
Díaz-Rodríguez SM, López-López D, Herrero-Turrión MJ, Gómez-Nieto R, Canal-Alonso A, Lopéz DE. Inferior Colliculus Transcriptome After Status Epilepticus in the Genetically Audiogenic Seizure-Prone Hamster GASH/Sal. Front Neurosci 2020; 14:508. [PMID: 32528245 PMCID: PMC7264424 DOI: 10.3389/fnins.2020.00508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/22/2020] [Indexed: 01/31/2023] Open
Abstract
The Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal), an animal model of reflex epilepsy, exhibits generalized tonic–clonic seizures in response to loud sound with the epileptogenic focus localized in the inferior colliculus (IC). Ictal events in seizure-prone strains cause gene deregulation in the epileptogenic focus, which can provide insights into the epileptogenic mechanisms. Thus, the present study aimed to determine the expression profile of key genes in the IC of the GASH/Sal after the status epilepticus. For such purpose, we used RNA-Seq to perform a comparative study between the IC transcriptome of GASH/Sal and that of control hamsters both subjected to loud sound stimulation. After filtering for normalization and gene selection, a total of 36 genes were declared differentially expressed from the RNA-seq analysis in the IC. A set of differentially expressed genes were validated by RT-qPCR showing significant differentially expression between GASH/Sal hamsters and Syrian control hamsters. The confirmed differentially expressed genes were classified on ontological categories associated with epileptogenic events similar to those produced by generalized tonic seizures in humans. Subsequently, based on the result of metabolomics, we found the interleukin-4 and 13-signaling, and nucleoside transport as presumably altered routes in the GASH/Sal model. This research suggests that seizures in GASH/Sal hamsters are generated by multiple molecular substrates, which activate biological processes, molecular processes, cellular components and metabolic pathways associated with epileptogenic events similar to those produced by tonic seizures in humans. Therefore, our study supports the use of the GASH/Sal as a valuable animal model for epilepsy research, toward establishing correlations with human epilepsy and searching new biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Sandra M Díaz-Rodríguez
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.,Department of Cellular Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Daniel López-López
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Manuel J Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.,Neurological Tissue Bank INCYL (BTN-INCYL), Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.,Department of Cellular Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Angel Canal-Alonso
- Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.,BISITE Research Group, University of Salamanca, Salamanca, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.,Department of Cellular Biology and Pathology, University of Salamanca, Salamanca, Spain
| |
Collapse
|
13
|
Dikkaya F, Seyhan S, Erdur SK, Şentürk F, Aras C. Optical coherence tomography and fundus autofluorescence imaging in an infant with RD3-related leber congenital amaurosis. Ophthalmic Genet 2020; 41:79-82. [PMID: 32083505 DOI: 10.1080/13816810.2020.1731837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Leber congenital amaurosis (LCA) is both genetically and phenotypically heterogeneous group of retinal disorder. Mutations in retinal degeneration 3 (RD3) have been reported as an infrequent cause of LCA which account for less than 1% of all known LCA cases. This case report provides Optical Coherence Tomography (OCT) and Fundus Autofluorescence (FAF) findings of an infant with LCA related to a mutation in RD3.Materials and Methods: Single retrospective case report.Results: TruSight One Expanded Sequencing Panel was applied to the patient on the Illumina NextSeq. Homozygous pathogenic variant (c.112 C > T, p.Arg38Ter) was detected in the RD3 gene. Well-demarcated central foveal atrophy was noted in the infrared imaging. FAF imaging showed perifoveal hyperautofluorescent ring and irregular hyperautofluorescence outside the vascular arcade. An arrest in foveal development and loss of outer retinal structure including outer nuclear layer, external limiting membrane, ellipsoid zone and interdigitation zone at the fovea were detected in the OCT imaging.Conclusion: This study indicates that RD3-related LCA has a very severe phenotype with foveal development arrest and very early loss of all photoreceptor layer and external limiting membrane at the fovea.
Collapse
Affiliation(s)
- Funda Dikkaya
- Department of Ophthalmology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Serhat Seyhan
- Department of Medical Genetic, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sevil Karaman Erdur
- Department of Ophthalmology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Fevzi Şentürk
- Department of Ophthalmology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Cengiz Aras
- Department of Ophthalmology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
14
|
Cho SH, Nahar A, Kim JH, Lee M, Kozmik Z, Kim S. Targeted deletion of Crb1/Crb2 in the optic vesicle models key features of leber congenital amaurosis 8. Dev Biol 2019; 453:141-154. [PMID: 31145883 DOI: 10.1016/j.ydbio.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/01/2023]
Abstract
The Crb1 and 2 (Crumbs homolog 1 & 2) genes encode large, single-pass transmembrane proteins essential for the apicobasal polarity and adhesion of epithelial cells. Crb1 mutations cause degenerative retinal diseases in humans, including Leber congenital amaurosis type 8 (LCA8) and retinitis pigmentosa type 12 (RP12). In LCA8, impaired photoreceptor development and/or survival is thought to cause blindness during early infancy, whereas, in RP12, progressive photoreceptor degeneration damages peripheral vision later in life. There are multiple animal models of RP12 pathology, but no experimental model of LCA8 recapitulates the full spectrum of its pathological features. To generate a mouse model of LCA8 and identify the functions of Crb1/2 in developing ocular tissues, we used an mRx-Cre driver to generate allelic combinations that enabled conditional gene ablation from the optic vesicle stage. In this series only Crb1/2 double knockout (dKO) mice exhibited characteristics of human LCA8 disease: locally thickened retina with spots devoid of cells, aberrant positioning of retinal cells, severely disrupted lamination, and depigmented retinal-pigmented epithelium. Retinal defects antedated E12.5, which is far earlier than the stage at which photoreceptor cells mainly differentiate. Most remarkably, Crb1/Crb2 dKO showed a severely attenuated electroretinogram at the eye opening stage. These results suggest that human LCA8 can be modeled in the mouse by simultaneously ablating Crb1/2 from the beginning of eye development. Importantly, they also indicate that LCA8 is caused by malfunction of retinal progenitor cells during early ocular development rather than by defective photoreceptor-Muller glial interaction, a mechanism proposed for RP12.
Collapse
Affiliation(s)
- Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Ankur Nahar
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ji Hyang Kim
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Matthew Lee
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
15
|
Li G, Gao G, Wang P, Song X, Xu P, Xie B, Zhou T, Pan G, Peng F, Zhang Q, Ge J, Zhong X. Generation and Characterization of Induced Pluripotent Stem Cells and Retinal Organoids From a Leber's Congenital Amaurosis Patient With Novel RPE65 Mutations. Front Mol Neurosci 2019; 12:212. [PMID: 31572124 PMCID: PMC6749091 DOI: 10.3389/fnmol.2019.00212] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
RPE65-associated Leber congenital amaurosis (LCA) is one of highly heterogeneous, early onset, severe retinal dystrophies with at least 130 gene mutation sites identified. Their pathogenicity has not been directly clarified due to lack of diseased cells. Here, we generated human-induced pluripotent stem cells (hiPSCs) from one putative LCA patient carrying two novel RPE65 mutations with c.200T>G (p.L67R) and c.430T>C (p.Y144H), named RPE65-hiPSCs, which were confirmed to contain the same mutations. The RPE65-hiPSCs presented typical morphological features with normal karyotype, expressed pluripotency markers, and developed teratoma in NOD-SCID mice. Moreover, the patient hiPSCs were able to differentiate toward retinal lineage fate and self-form retinal organoids with layered neural retina. All major retinal cell types including photoreceptor and retinal pigment epithelium (RPE) cells were also acquired overtime. Compared to healthy control, RPE cells from patient iPSCs had lower expression of RPE65, but similar phagocytic activity and VEGF secretion level. This study provided the valuable patient specific, disease targeted retinal organoids containing photoreceptor and RPE cells, which would facilitate the study of personalized pathogenic mechanisms of disease, drug screening, and cell replacement therapy.
Collapse
Affiliation(s)
- Guilan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaojing Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tiancheng Zhou
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guangjin Pan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fuhua Peng
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Chen HY, Welby E, Li T, Swaroop A. Retinal disease in ciliopathies: Recent advances with a focus on stem cell-based therapies. ACTA ACUST UNITED AC 2019; 4:97-115. [PMID: 31763178 PMCID: PMC6839492 DOI: 10.3233/trd-190038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ciliopathies display extensive genetic and clinical heterogeneity, varying in severity, age of onset, disease progression and organ systems affected. Retinal involvement, as demonstrated by photoreceptor dysfunction or death, is a highly penetrant phenotype among a vast majority of ciliopathies. Photoreceptor cells possess a specialized and modified sensory cilium with membrane discs where efficient photon capture and ensuing signaling cascade initiate the visual process. Disruptions of cilia biogenesis and protein transport lead to impairment of photoreceptor function and eventually degeneration. Despite advances in elucidation of ciliogenesis and photoreceptor cilia defects, we have limited understanding of pathogenic mechanisms underlying retinal phenotype(s) observed in human ciliopathies. Patient-derived induced pluripotent stem cell (iPSC)-based approaches offer a unique opportunity to complement studies with model organisms and examine cilia disease relevant to humans. Three-dimensional retinal organoids from iPSC lines feature laminated cytoarchitecture, apical-basal polarity and emergence of a ciliary structure, thereby permitting pathogenic modeling of human photoreceptors in vitro. Here, we review the biology of photoreceptor cilia and associated defects and discuss recent progress in evolving treatment modalities, especially using patient-derived iPSCs, for retinal ciliopathies.
Collapse
Affiliation(s)
- Holly Yu Chen
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Welby
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Glen WB, Peterseim MMW, Badilla R, Znoyko I, Bourg A, Wilson R, Hardiman G, Wolff D, Martinez J. A high prevalence of biallelic RPE65 mutations in Costa Rican children with Leber congenital amaurosis and early-onset retinal dystrophy. Ophthalmic Genet 2019; 40:110-117. [PMID: 30870047 DOI: 10.1080/13816810.2019.1582069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD), are primary causes of inherited childhood blindness. Both are autosomal recessive diseases, with mutations in more than 25 genes explaining approximately ~70% of cases. However, the genetic cause for many cases remains unclear. Sequencing studies from genetically isolated populations with increased prevalence of a disorder has proven useful for rare variant studies, making Costa Rica an ideal place to study LCA/EORD genetics. MATERIALS AND METHODS Twenty-eight affected children (25 LCA, three EORD) and their immediate family members, totaling 52 individuals (30 affected) from 22 families, were sequenced. Whole exome sequencing was performed on all affected individuals. Available parents were analyzed either by whole exome sequencing (WES) or Sanger sequencing to determine transmission. RESULTS All affected individuals demonstrated compound heterozygous or homozygous mutations in known Inherited Retinal Disease (IRD) associated genes. Twelve variants were identified in at least one individual in three genes, RDH12, RPE65, and USH2A. Four recurrent RPE65 mutations were observed in 97% of individuals and 95% of families. All patients with LCA and two of the three individuals with EORD had biallelic mutations in RPE65; one child with EORD had a homozygous RDH12 mutation. CONCLUSIONS These data suggest that the majority of LCA/EORD in Costa Rica is due to four founder mutations in RPE65 which have been maintained in this genetically isolated population. This finding is of great clinical significance due to the availability of gene therapy recently approved in the US and European Union for patients with biallelic RPE65 defects.
Collapse
Affiliation(s)
- W Bailey Glen
- a Pathology and Laboratory Medicine , Medical University of South Carolina.,b Center for Genomic Medicine , Medical University of South Carolina
| | | | - Ramses Badilla
- d Genetics and Metabolism , National Children's Hospital , San José , Costa Rica.,e Caja Costarricense del Seguro Social
| | - Iya Znoyko
- a Pathology and Laboratory Medicine , Medical University of South Carolina
| | - Andre Bourg
- f Department of Medicine , Medical University of South Carolina
| | - Robert Wilson
- a Pathology and Laboratory Medicine , Medical University of South Carolina.,b Center for Genomic Medicine , Medical University of South Carolina
| | - Gary Hardiman
- b Center for Genomic Medicine , Medical University of South Carolina.,f Department of Medicine , Medical University of South Carolina.,g Institute for Global Food Security , Queen's University Belfast
| | - Daynna Wolff
- a Pathology and Laboratory Medicine , Medical University of South Carolina
| | - Joaquin Martinez
- e Caja Costarricense del Seguro Social.,h Division of Ophthalmology , National Children's Hospital , San José , Costa Rica
| |
Collapse
|
18
|
Motta FL, Martin RP, Filippelli-Silva R, Salles MV, Sallum JMF. Relative frequency of inherited retinal dystrophies in Brazil. Sci Rep 2018; 8:15939. [PMID: 30374144 PMCID: PMC6206004 DOI: 10.1038/s41598-018-34380-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Among the Brazilian population, the frequency rates of inherited retinal dystrophies and their causative genes are underreported. To increase the knowledge about these dystrophies in our population, we retrospectively studied the medical records of 1,246 Brazilian patients with hereditary retinopathies during 20 years of specialized outpatient clinic care. Of these patients, 559 had undergone at least one genetic test. In this cohort, the most prevalent dystrophies were non-syndromic retinitis pigmentosa (35%), Stargardt disease (21%), Leber congenital amaurosis (9%), and syndromic inherited retinal dystrophies (12%). Most patients had never undergone genetic testing (55%), and among the individuals with molecular test results, 28.4% had negative or inconclusive results compared to 71.6% with a conclusive molecular diagnosis. ABCA4 was the most frequent disease-causing gene, accounting for 20% of the positive cases. Pathogenic variants also occurred frequently in the CEP290, USH2A, CRB1, RPGR, and CHM genes. The relative frequency rates of different inherited retinal dystrophies in Brazil are similar to those found globally. Although mutations in more than 250 genes lead to hereditary retinopathies, only 66 genes were responsible for 70% of the cases, which indicated that smaller and cheaper gene panels can be just as effective and provide more affordable solutions for implementation by the Brazilian public health system.
Collapse
Affiliation(s)
- Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renan Paulo Martin
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil.,Institute of Genetic Medicine, Johns Hopkins Medicine, Baltimore, USA
| | | | | | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, Brazil. .,Instituto de Genética Ocular, Sao Paulo, Brazil.
| |
Collapse
|
19
|
Miraldi Utz V, Coussa RG, Antaki F, Traboulsi EI. Gene therapy for RPE65-related retinal disease. Ophthalmic Genet 2018; 39:671-677. [DOI: 10.1080/13816810.2018.1533027] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Virginia Miraldi Utz
- Cincinnati Children’s Hospital Medical Center, Abrahamson Pediatric Eye Institute, Cincinnati, OH, USA
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | | | - Fares Antaki
- Department of Ophthalmology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|