1
|
Xiang L, Zhang J, Rao FQ, Yang QL, Zeng HY, Huang SH, Xie ZX, Lv JN, Lin D, Chen XJ, Wu KC, Lu F, Huang XF, Chen Q. Depletion of miR-96 Delays, But Does Not Arrest, Photoreceptor Development in Mice. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35481839 PMCID: PMC9055555 DOI: 10.1167/iovs.63.4.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Abundant retinal microRNA-183 cluster (miR-183C) has been reported to be a key player in photoreceptor development and functionality in mice. However, whether there is a protagonist in this cluster remains unclear. Here, we used a mutant mouse model to study the role of miR-96, a member of miR-183C, in photoreceptor development and functionality. Methods The mature miR-96 sequence was removed using the CRISPR/Cas9 genome-editing system. Electroretinogram (ERG) and optical coherence tomography (OCT) investigated the changes in structure and function in mouse retinas. Immunostaining determined the localization and morphology of the retinal cells. RNA sequencing was conducted to observe retinal transcription alterations. Results The miR-96 mutant mice exhibited cone developmental delay, as occurs in miR-183/96 double knockout mice. Immunostaining of cone-specific marker genes revealed cone nucleus mislocalization and exiguous Opn1mw/Opn1sw in the mutant (MT) mouse outer segments at postnatal day 10. Interestingly, this phenomenon could be relieved in the adult stages. Transcriptome analysis revealed activation of microtubule-, actin filament–, and cilia-related pathways, further supporting the findings. Based on ERG and OCT results at different ages, the MT mice displayed developmental delay not only in cones but also in rods. In addition, a group of miR-96 potential direct and indirect target genes was summarized for interpretation and further studies of miR-96–related retinal developmental defects. Conclusions Depletion of miR-96 delayed but did not arrest photoreceptor development in mice. This miRNA is indispensable for mouse photoreceptor maturation, especially for cones.
Collapse
Affiliation(s)
- Lue Xiang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Juan Zhang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng-Qin Rao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Qiao-Li Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui-Yi Zeng
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Sheng-Hai Huang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhen-Xiang Xie
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ji-Neng Lv
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Dan Lin
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xue-Jiao Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Kun-Chao Wu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Xiu-Feng Huang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| |
Collapse
|
2
|
Zhang H, Zhuang P, Welchko RM, Dai M, Meng F, Turner DL. Regulation of retinal amacrine cell generation by miR-216b and Foxn3. Development 2022; 149:273765. [PMID: 34919141 PMCID: PMC8917416 DOI: 10.1242/dev.199484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/07/2021] [Indexed: 01/19/2023]
Abstract
The mammalian retina contains a complex mixture of different types of neurons. We find that microRNA miR-216b is preferentially expressed in postmitotic retinal amacrine cells in the mouse retina, and expression of miR-216a/b and miR-217 in retina depend in part on Ptf1a, a transcription factor required for amacrine cell differentiation. Surprisingly, ectopic expression of miR-216b directed the formation of additional amacrine cells and reduced bipolar neurons in the developing retina. We identify the Foxn3 mRNA as a retinal target of miR-216b by Argonaute PAR-CLIP and reporter analysis. Inhibition of Foxn3, a transcription factor, in the postnatal developing retina by RNAi increased the formation of amacrine cells and reduced bipolar cell formation. Foxn3 disruption by CRISPR in embryonic retinal explants also increased amacrine cell formation, whereas Foxn3 overexpression inhibited amacrine cell formation prior to Ptf1a expression. Co-expression of Foxn3 partially reversed the effects of ectopic miR-216b on retinal cell formation. Our results identify Foxn3 as a novel regulator of interneuron formation in the developing retina and suggest that miR-216b likely regulates Foxn3 and other genes in amacrine cells.
Collapse
Affiliation(s)
- Huanqing Zhang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Pei Zhuang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ryan M. Welchko
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Manhong Dai
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Fan Meng
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Turner
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
3
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Shen RJ, Wang JG, Li Y, Jin ZB. Consanguinity-based analysis of exome sequencing yields likely genetic causes in patients with inherited retinal dystrophy. Orphanet J Rare Dis 2021; 16:278. [PMID: 34130719 PMCID: PMC8204521 DOI: 10.1186/s13023-021-01902-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Consanguineous families have a relatively high prevalence of genetic disorders caused by bi-allelic mutations in recessive genes. This study aims to evaluate the effectiveness and efficiency of a consanguinity-based exome sequencing approach to capturing genetic mutations in inherited retinal dystrophy families with consanguineous marriages. Methods Ten unrelated consanguineous families with a proband affected by inherited retinal dystrophy were recruited in this study. All participants underwent comprehensive ophthalmic examinations. Whole exome sequencing was performed, followed by a homozygote-prior strategy to rapidly filter disease-causing mutations. Bioinformatic prediction of pathogenicity, Sanger sequencing and co-segregation analysis were carried out for further validation. Results In ten consanguineous families, a total of 10 homozygous mutations in 8 IRD genes were identified, including 2 novel mutations, c.1654_1655delAG (p. R552Afs*5) in gene FAM161A in a patient diagnosed with retinitis pigmentosa, and c.830T > C (p.L277P) in gene CEP78 in a patient diagnosed with cone and rod dystrophy. Conclusion The genetic etiology in consanguineous families with IRD were successfully identified using consanguinity-based analysis of exome sequencing data, suggesting that this approach could provide complementary insights into genetic diagnoses in consanguineous families with variant genetic disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01902-5.
Collapse
Affiliation(s)
- Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Jun-Gang Wang
- Department of Ophthalmology, Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.
| |
Collapse
|
5
|
Sun L, Chen X, Jin Z. Emerging roles of non‐coding RNAs in retinal diseases: A review. Clin Exp Ophthalmol 2020; 48:1085-1101. [PMID: 32519377 DOI: 10.1111/ceo.13806] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Lan‐Fang Sun
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Xue‐Jiao Chen
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Zi‐Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory Beijing China
| |
Collapse
|
6
|
Zhang CJ, Xiang L, Chen XJ, Wang XY, Wu KC, Zhang BW, Chen DF, Jin GH, Zhang H, Chen YC, Liu WQ, Li ML, Ma Y, Jin ZB. Ablation of Mature miR-183 Leads to Retinal Dysfunction in Mice. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 32176259 PMCID: PMC7401733 DOI: 10.1167/iovs.61.3.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose The microRNA cluster miR-183C, which includes miR-183 and two other genes, is critical for multiple sensory systems. In mouse retina, removal of this cluster results in photoreceptor defects in polarization, phototransduction, and outer segment elongation. However, the individual roles of the three components of this cluster are not clearly known. We studied the separate role of mouse miR-183 in in vivo. Methods miR-183 knockout mice were generated using the CRISPR/Cas9 genome-editing system. Electroretinography were carried out to investigate the changes of retinal structures and function. miR-183 was overexpressed by subretinal adeno-associated virus (AAV) injection in vivo. Rnf217, a target of miR-183 was overexpressed by cell transfection of the photoreceptor-derived cell line 661W in vitro. RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to compare the gene expression changes in AAV-injected mice and transfected cells. Results The miR-183 knockout mice showed progressively attenuated electroretinogram responses. Over- or under-expression of Rnf217, a direct target of miR-183, misregulated expression of cilia-related BBSome genes. Rnf217 overexpression also led to compromised electroretinography responses in WT mice, indicating that it may contribute to functional abnormalities in miR-183 knockout mice. Conclusions miR-183 is essential for mouse retinal function mediated directly and indirectly through Rnf217 and cilia-related genes. Our findings provide valuable insights into the explanation and analysis of the regulatory role of the individual miR-183 in miR-183C.
Collapse
|
7
|
Chen ZJ, Lin KH, Lee SH, Shen RJ, Feng ZK, Wang XF, Huang XF, Huang ZQ, Jin ZB. Mutation spectrum and genotype-phenotype correlation of inherited retinal dystrophy in Taiwan. Clin Exp Ophthalmol 2020; 48:486-499. [PMID: 31872526 DOI: 10.1111/ceo.13708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Inherited retinal dystrophy (IRD) is a group of irreversible retinal degenerative disorders with significant genotypic and phenotypic heterogeneity, which cause difficulty in making a precise clinical diagnosis. Furthermore, the mutation spectrum of IRD in Taiwan remains unknown. Therefore, our study focused on investigating the spectrum of mutations among Taiwanese families with IRD using targeted exome sequencing (TES) technology. METHODS We recruited a total of 60 unrelated Taiwanese families with IRD; most of them were retinitis pigmentosa. We employed TES to investigate 284 candidate genes. Bioinformatics analysis, Sanger sequencing-based co-segregation testing, and computational assessment were performed to validate each mutation and its pathogenicity. The genotype-phenotype correlation was analysed in all patients with mutations defined in the guidelines provided by the American College of Medical Genetics. RESULTS We successfully identified genetic causes in 32 families (detection rate of 53.3%). Among them, 16 had a sporadic inheritance (16/36, 44.4%); eight had an autosomal recessive inheritance (8/14, 57.1%); four had an autosomal dominant inheritance (4/5, 80%); four had an X-linked inheritance (4/5, 80%). Among 38 pathological mutations in 19 known genes, 20 mutations are reported here for the first time. Novel mutation spectrum and genotype-phenotype correlations were revealed as well. CONCLUSION Here we achieved a detection rate of 53.3% and elucidated the mutation spectrum in Taiwanese families with IRD for the first time. The results indicated that CYP4V2 and USH2A might be the most common pathogenic genes in IRD patients in Taiwan.
Collapse
Affiliation(s)
- Zhen-Ji Chen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Keng-Hung Lin
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shi-Huang Lee
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Ren-Juan Shen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Zhuo-Kun Feng
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Fang Wang
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Xiu-Feng Huang
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Zhi-Qin Huang
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Wu KC, Chen XJ, Jin GH, Wang XY, Yang DD, Li YP, Xiang L, Zhang BW, Zhou GH, Zhang CJ, Jin ZB. Deletion of miR-182 Leads to Retinal Dysfunction in Mice. Invest Ophthalmol Vis Sci 2019; 60:1265-1274. [PMID: 30924851 DOI: 10.1167/iovs.18-24166] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose MicroRNA-182 (miR-182) is abundantly expressed in mammalian retinas; however, the association between miR-182 and retinal function remains unclear. In this study, we explored whether miR-182 contributes to functional decline in retinas using a miR-182 depleted mouse. Methods Electroretinogram (ERG) amplitudes at different ages were measured in miR-182 knockout (KO) mice. The thickness and lamination of retinas were assessed using a color fundus camera and high-resolution optical coherence tomography. Expression levels of key photoreceptor-specific genes and the miR-183/96/182 cluster (miR-183C) were quantified using quantitative real-time PCR. RNA sequencing and light-induced damage were carried out to observe the changes in the retinal transcriptome and sensitivity to light damage in the miR-182 KO mice. Results The ERG recording reveals that the ERG response amplitude decreased both at early and later ages when compared with control littermates. The expression of some key photoreceptor-specific genes was down-regulated with deletion of miR-182 in retina. RNA sequencing indicated that some biological processes of visual system were affected, and the numbers of potential target genes of miR-182 were presented in the mouse retina using bioinformatics analysis. The miR-182 KO mice were characterized by progressively losing the outer segment after being treated with light-damage exposure. The thickness and lamination of retina as well as compensatory expression of miR-183C showed no apparent changes in retina of miR-182 KO mice under normal laboratory lighting condition. Conclusions Our findings provided new insights into the relationship between the miR-182 and retinal development and revealed that miR-182 may play a critical role in maintaining retinal function.
Collapse
Affiliation(s)
- Kun-Chao Wu
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xue-Jiao Chen
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guang-Hui Jin
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yun Wang
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dan-Dan Yang
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yan-Ping Li
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lue Xiang
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bo-Wen Zhang
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Gao-Hui Zhou
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chang-Jun Zhang
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zi-Bing Jin
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Yang L, Guo R, Ju Z, Wang X, Jiang Q, Liu Y, Zhao H, He K, Li J, Huang J. Production of an aberrant splice variant of CCL5 is not caused by genetic mutation in the mammary glands of mastitis‑infected Holstein cows. Mol Med Rep 2019; 19:4159-4166. [PMID: 30942444 PMCID: PMC6472127 DOI: 10.3892/mmr.2019.10103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/21/2019] [Indexed: 01/09/2023] Open
Abstract
Genetic mutations, including single nucleotide polymorphisms (SNPs), result in aberrant alternatively splicing of gene and involves in susceptibility of inflammatory diseases, including bovine mastitis. C‑C motif chemokine ligand 5 (CCL5) is an immune‑associated gene, but its alternative splicing (AS) mechanism of gene expression has not yet been understood. The present study identified the splice variant of CCL5 and the compared differential expression of various transcripts between healthy and mastitic mammary gland tissue from cows. A novel transcript lacking exon 2 with a deletion of 112 bp (referred to as CCL5‑AS) was identified in the mammary gland. The expression of CCL5‑AS was lower compared with CCL5‑reference in the healthy and mastitic mammary tissues. A total of two novel SNPs (g.1647 C>T and g.1804 G>A) were identified in exon 2 of CCL5. Using the splicing mini‑gene reporter assay in bovine mammary epithelial cells (MAC‑T) and 293T cells, it was confirmed that the production of CCL5‑AS was not caused by the two SNPs. The present findings suggested that alternative splicing is one of the mechanisms of CCL5 expression regulation and is involved in mastitis infection, but that genetic mutation was not responsible for the generation of the abnormal transcript of CCL5 in cows.
Collapse
Affiliation(s)
- Ling Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei 056021, P.R. China
| | - Ruiqing Guo
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei 056021, P.R. China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China
| | - Yong Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei 056021, P.R. China
| | - Han Zhao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China
| | - Kaili He
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei 056021, P.R. China
| | - Jianbin Li
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China
| |
Collapse
|
10
|
Non-coding RNAs in retinal development and function. Hum Genet 2018; 138:957-971. [DOI: 10.1007/s00439-018-1931-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022]
|