3
|
Lin CW, Huang CW, Luo AC, Chou YT, Huang YS, Chen PL, Chen TC. Genetic Spectrum and Characteristics of Hereditary Optic Neuropathy in Taiwan. Genes (Basel) 2021; 12:genes12091378. [PMID: 34573359 PMCID: PMC8467776 DOI: 10.3390/genes12091378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Hereditary optic neuropathy (HON) is a group of genetically heterogeneous diseases that cause optic nerve atrophy and lead to substantial visual impairment. HON may present with optic nerve atrophy only or in association with various systemic abnormalities. Although a genetic survey is indispensable for diagnosing HON, conventional sequencing techniques could render its diagnosis challenging. In this study, we attempted to explore the genetic background of patients with HON in Taiwan through capture-based next-generation sequencing targeting 52 HON-related genes. In total, 57 patients from 48 families were recruited, with 6 patients diagnosed as having Leber hereditary optic neuropathy through initial screening for three common variants (m.3460G>A, m.11778G>A, m.14484T>C). Disease-causing genotypes were identified in 14 (33.3%) probands, and OPA1 variants were the most prevalent cause of autosomal HON. Exposure to medications such as ethambutol could trigger an attack of autosomal dominant optic atrophy. WFS1 variants were identified in three probands with variable clinical features in our cohort. Hearing impairment could occur in patients with OPA1 or WFS1 variants. This is the first comprehensive study investigating the genetic characteristics of HON in Taiwan, especially for autosomal HON. Our results could provide useful information for clinical diagnosis and genetic counseling in this field.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Child
- Child, Preschool
- DNA Mutational Analysis/statistics & numerical data
- Female
- GTP Phosphohydrolases/genetics
- Genetic Counseling
- Genetic Testing/statistics & numerical data
- Humans
- Male
- Membrane Proteins/genetics
- Middle Aged
- Mutation
- Optic Atrophy, Autosomal Dominant/diagnosis
- Optic Atrophy, Autosomal Dominant/epidemiology
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/epidemiology
- Optic Atrophy, Hereditary, Leber/genetics
- Taiwan/epidemiology
- Young Adult
Collapse
Affiliation(s)
- Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Ching-Wen Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Allen Chilun Luo
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
| | - Yuh-Tsyr Chou
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
| | - Yu-Shu Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (P.-L.C.); (T.-C.C.); Tel.: +886-2-23123456 (ext. 71942) (P.-L.C.); +886-2-23123456 (ext. 63783) (T.-C.C.); Fax: +886-2-23934420 (T.-C.C.)
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
- Correspondence: (P.-L.C.); (T.-C.C.); Tel.: +886-2-23123456 (ext. 71942) (P.-L.C.); +886-2-23123456 (ext. 63783) (T.-C.C.); Fax: +886-2-23934420 (T.-C.C.)
| |
Collapse
|
4
|
Sun C, Wu X, Bai HX, Wang C, Liu Z, Yang C, Lu Y, Jiang P. OPA1 haploinsufficiency due to a novel splicing variant resulting in mitochondrial dysfunction without mitochondrial DNA depletion. Ophthalmic Genet 2020; 42:45-52. [PMID: 33251885 DOI: 10.1080/13816810.2020.1849313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: To identify and investigate the effects of a novel splicing variant, c.1444-2A>C of OPA1, on its transcript, translation, and mitochondrial function, which was found in an 8-year-old patient with dominantly inherited optic atrophy (DOA). Materials and Methods: The clinical evaluations were performed at the Eye Center. Lymphoblast cell lines were generated from the patient, mother, and a normal control with the same haplotype of mitochondrial genome. The novel variant was confirmed by Sanger sequencing. The splicing alteration of cDNA was checked by both Sanger sequencing and agarose gel. OPA1 expression was carried out by RT-PCR and Western blotting. Transmission electron microscopy was used for mitochondrial morphology. Mitochondrial functions, including the rates of oxygen consumption, ATP generation, ROS product and membrane potential were assayed in lymphoblast cells. Results: The novel OPA1 splicing variant, c.1444-2A>C, led to a deletion of the 15th exon in mRNA transcript. Approximately 50% reduction of mRNA and protein expression was present in mutant cells as compared with controls. No marked depletion of mtDNA nor mitochondrial mass was caused by the splicing variant. However, defects that the impaired capacity of OXPHOS, reduced ATP generation, increased ROS and decreased membrane potential were observed in the mutant cells, which promoted a ubiquitin-binding mitophagy instead of apoptosis. Conclusions: The novel splicing variant, c.1444-2A>C resulted in OPA1 haploinsufficiency effect on its expression and mitochondrial function without mtDNA depletion. Our findings may provide new insights into the understanding of pathophysiology of DOA.
Collapse
Affiliation(s)
- Chuanbin Sun
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | - Xiaoyu Wu
- Division of Medical Genetics and Genomics, the Children's Hospitals, Zhejiang University School of Medicine, National Clinical Research Center for Child Health , Hangzhou, China
| | - Hai-Xia Bai
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | - Chenghui Wang
- Division of Medical Genetics and Genomics, the Children's Hospitals, Zhejiang University School of Medicine, National Clinical Research Center for Child Health , Hangzhou, China
| | - Zhe Liu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital , Hangzhou, China
| | - Chenxi Yang
- Division of Medical Genetics and Genomics, the Children's Hospitals, Zhejiang University School of Medicine, National Clinical Research Center for Child Health , Hangzhou, China
| | - Yijun Lu
- Division of Medical Genetics and Genomics, the Children's Hospitals, Zhejiang University School of Medicine, National Clinical Research Center for Child Health , Hangzhou, China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, the Children's Hospitals, Zhejiang University School of Medicine, National Clinical Research Center for Child Health , Hangzhou, China
| |
Collapse
|
5
|
Li JK, Li W, Gao FJ, Qu SF, Hu FY, Zhang SH, Li LL, Wang ZW, Qiu Y, Wang LS, Huang J, Wu JH, Chen F. Mutation Screening of mtDNA Combined Targeted Exon Sequencing in a Cohort With Suspected Hereditary Optic Neuropathy. Transl Vis Sci Technol 2020; 9:11. [PMID: 32855858 PMCID: PMC7422818 DOI: 10.1167/tvst.9.8.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/23/2020] [Indexed: 12/02/2022] Open
Abstract
Purpose Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) are the two commonest forms of hereditary optic neuropathy. The aim of this study was to comprehensively investigate the incidence and spectrum of mutations in patients with suspected hereditary optic neuropathy by combining mitochondrial DNA (mtDNA) genome-wide and targeted exon sequencing. Methods A cohort of 1101 subjects were recruited to participate in the study, comprising 177 families (177 probands and their family members, a total of 537 subjects, including 254 patients) and 164 sporadic cases with suspected hereditary optic neuropathy, and 400 unrelated control subjects for genetic analysis: all subjects (including control subjects) underwent a comprehensive ophthalmologic examination and were subjected to sequencing analysis of mtDNA genome-wide and targeted exon. Overall, targeted exon sequencing was used to screen 792 genes associated with common hereditary eye diseases, and the mtDNA genome-wide were screened by next-generation sequencing. Results We found variants detected in 168 (40.2%, 168/418) of the 418 patients screened. Among these, 132 cases (78.6%, 132/168) were detected with known LHON disease-causing mtDNA variants; 40 cases (23.8%, 40/168) were detected with nuclear DNA (ntDNA) variants, which included 36 cases (21.4%, 36/168) with detected OPA1 mutations, 4 patients (2.4%, 4/168) with detected OPA3 mutations, and 2 patients (1.2%, 2/168) with detected TMEM126A homozygous mutation. Coexistence variation (mtDNA/mtDNA [n = 16], ntDNA/ntDNA [n = 4], mtDNA/ntDNA [n = 7]) was found in 27 patients (16.4%, 27/165), including mtDNA/ntDNA coexistence variation that was detected in seven patients. Among these ntDNA mutations, 38 distinct disease-causing variants, including autosomal recessive heterozygous mutations, were detected, which included 22 novel variants and two de novo variants. Total haplogroup distribution showed that 34.5% (29/84) and 28.6% (24/84) of the affected subjects with m.11778G>A belonged to haplogroup D and M, with a high frequency of subhaplogroups D4, D5, and M7. Conclusions The LHON-mtDNA mutations are the commonest genetic defects in this Chinese cohort, followed by the OPA1 mutations. To our knowledge, this is the first comprehensive study of LHON, ADOA, and autosomal recessive optic atrophy combined with mtDNA genome-wide and targeted exon sequencing, as well as haplogroup analysis, in a large cohort of Chinese patients with suspected hereditary optic neuropathy. Our findings provide a powerful basis for genetic counseling in patients with suspected hereditary optic neuropathy. Translational Relevance We applied mtDNA genome-wide sequencing combined with panel-based targeted exon sequencing to explore the pathogenic variation spectrum and genetic characteristics of patients with suspected hereditary optic neuropathy, providing a comprehensive research strategy for clinical assistant diagnosis, treatment, and genetic counseling.
Collapse
Affiliation(s)
- Jian-Kang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.,BGI-Shenzhen, Shenzhen, China
| | - Wei Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Feng-Juan Gao
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Shou-Fang Qu
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Fang-Yuan Hu
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Li-Li Li
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Zi-Wei Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Yong Qiu
- BGI-Shenzhen, Shenzhen, China.,MGI, BGI-Shenzhen, Shenzhen, China
| | - Lu-Sheng Wang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.,BGI-Shenzhen, Shenzhen, China
| | - Jie Huang
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Ji-Hong Wu
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, China.,MGI, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
6
|
Finsterer J, Laccone F. Autosomal dominant optic atrophy plus due to the novel OPA1 variant c.1463G>C. Metab Brain Dis 2019; 34:1023-1027. [PMID: 31152339 DOI: 10.1007/s11011-019-00425-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/22/2019] [Indexed: 12/25/2022]
Abstract
OPA1 variants most frequently manifest phenotypically with pure autosomal dominant optic atrophy (ADOA) or with ADOA plus. The most frequent abnormalities in ADOA plus in addition to the optic nerve affection include hypoacusis, migraine, myopathy, and neuropathy. Hypertelorism and atrophy of the acoustic nerve have not been reported. The patient is a 48yo Caucasian female with slowly progressive, visual impairment since childhood, bilateral hypoacusis since age 10y, and classical migraine since age 20y. The family history was positive for diabetes (father, mother) and visual impairment (daughter). Clinical examination revealed hypertelorism, visual impairment, hypoacusis, tinnitus, weakness for elbow flexion and finger straddling, and generally reduced tendon reflexes. MRI of the cerebrum was non-informative but hypoplasia of the acoustic nerve bilaterally was described. Visually-evoked potentials revealed markedly prolonged P100-latencies bilaterally. Acoustically-evoked potentials were distorted with poor reproducibility and prolonged latencies. Muscle biopsy revealed reduced activities of complexes I, II, and IV. Genetic work-up revealed the novel variant c.1463G>C in the OPA1 gene. This case provides novel information regarding the genotype of ADOA plus. The novel OPA1 variant c.1463G>C not only manifests with visual impairment, hypoacusis, migraine, and myopathy, but also with hypertelorisms and acoustic nerve atrophy.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Postfach 20, 1180, Vienna, Austria.
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| |
Collapse
|