1
|
Tsedilina TR, Sharova E, Iakovets V, Skorodumova LO. Systematic review of SLC4A11, ZEB1, LOXHD1, and AGBL1 variants in the development of Fuchs' endothelial corneal dystrophy. Front Med (Lausanne) 2023; 10:1153122. [PMID: 37441688 PMCID: PMC10333596 DOI: 10.3389/fmed.2023.1153122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/30/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The pathogenic role of variants in TCF4 and COL8A2 in causing Fuchs' endothelial corneal dystrophy (FECD) is not controversial and has been confirmed by numerous studies. The causal role of other genes, SLC4A11, ZEB1, LOXHD1, and AGBL1, which have been reported to be associated with FECD, is more complicated and less obvious. We performed a systematic review of the variants in the above-mentioned genes in FECD cases, taking into account the currently available population frequency information, transcriptomic data, and the results of functional studies to assess their pathogenicity. Methods Search for articles published in 2005-2022 was performed manually between July 2022 and February 2023. We searched for original research articles in peer-reviewed journals, written in English. Variants in the genes of interest identified in patients with FECD were extracted for the analysis. We classified each presented variant by pathogenicity status according to the ACMG criteria implemented in the Varsome tool. Diagnosis, segregation data, presence of affected relatives, functional analysis results, and gene expression in the corneal endothelium were taken into account. Data on the expression of genes of interest in the corneal endothelium were extracted from articles in which transcriptome analysis was performed. The identification of at least one variant in a gene classified as pathogenic or significantly associated with FECD was required to confirm the causal role of the gene in FECD. Results The analysis included 34 articles with 102 unique ZEB1 variants, 20 articles with 64 SLC4A11 variants, six articles with 26 LOXHD1 variants, and five articles with four AGBL1 variants. Pathogenic status was confirmed for seven SLC4A11 variants found in FECD. No variants in ZEB1, LOXHD1, and AGBL1 genes were classified as pathogenic for FECD. According to the transcriptome data, AGBL1 and LOXHD1 were not expressed in the corneal endothelium. Functional evidence for the association of LOXHD1, and AGBL1 with FECD was conflicting. Conclusion Our analysis confirmed the causal role of SLC4A11 variants in the development of FECD. The causal role of ZEB1, LOXHD1, and AGBL1 variants in FECD has not been confirmed. Further evidence from familial cases and functional analysis is needed to confirm their causal roles in FECD.
Collapse
Affiliation(s)
- Tatiana Romanovna Tsedilina
- Laboratory of Human Molecular Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Elena Sharova
- Laboratory of Human Molecular Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Valeriia Iakovets
- Laboratory of Human Molecular Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Liubov Olegovna Skorodumova
- Laboratory of Human Molecular Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
2
|
Liu X, Zheng T, Zhao C, Zhang Y, Liu H, Wang L, Liu P. Genetic mutations and molecular mechanisms of Fuchs endothelial corneal dystrophy. EYE AND VISION 2021; 8:24. [PMID: 34130750 PMCID: PMC8204469 DOI: 10.1186/s40662-021-00246-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/18/2021] [Indexed: 11/10/2022]
Abstract
Background Fuchs endothelial corneal dystrophy is a hereditary disease and the most frequent cause of corneal transplantation in the worldwide. Its main clinical signs are an accelerated decrease in the number of endothelial cells, thickening of Descemet’s membrane and formation of guttae in the extracellular matrix. The cornea’s ability to maintain stromal dehydration is impaired, causing painful epithelial bullae and loss of vision at the point when the amount of corneal endothelial cells cannot be compensated. At present, apart from corneal transplantation, there is no other effective treatment that prevents blindness. Main text In this review, we first summarized the mutations of COL8A2, TCF4, TCF8, SLC4A11 and AGBL1 genes in Fuchs endothelial corneal dystrophy. The molecular mechanisms associated with Fuchs endothelial corneal dystrophy, such as endoplasmic reticulum stress and unfolded protein response pathway, oxidative stress, mitochondrial dysregulation pathway, apoptosis pathway, mitophagy, epithelial-mesenchymal transition pathway, RNA toxicity and repeat-associated non-ATG translation, and other pathogenesis, were then explored. Finally, we discussed several potential treatments related to the pathogenesis of Fuchs endothelial corneal dystrophy, which may be the focus of future research. Conclusions The pathogenesis of Fuchs endothelial corneal dystrophy is very complicated. Currently, corneal transplantation is an important method in the treatment of Fuchs endothelial corneal dystrophy. It is necessary to continuously explore the pathogenesis of Fuchs endothelial corneal dystrophy and establish the scientific foundations for the development of next-generation corneal therapeutics.
Collapse
Affiliation(s)
- Xuerui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tao Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chuchu Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanruo Liu
- The Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liyuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Ping Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Walckling M, Waterstradt R, Baltrusch S. Collagen Remodeling Plays a Pivotal Role in Endothelial Corneal Dystrophies. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 33259606 PMCID: PMC7718819 DOI: 10.1167/iovs.61.14.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To elucidate the collagen structure in the Descemet membrane (DM) of the human cornea and to characterize its rearrangement in patients with endothelial corneal dystrophies. Methods Corneas from nine human donors and dystrophic DMs removed from 16 affected eyes of 13 patients by endothelial keratoplasty (DMEK) were investigated using a correlative RT-qPCR and label-free two-channel multiphoton microscopy (MPM) setup. Although collagen formation was visualized by second harmonic generation, the cellular structure was determined by autofluorescence. Results The DM of the human donor cornea was characterized by a consistent pattern of fine hexagonal collagen structures that form a supportive scaffold for the endothelial cells. Accordingly, network-forming collagens (8A1 and 8A2) but less fibrillar collagens (only 1A2) were expressed. DMEK resulted in significant (P < 0.0001) improvement of best-corrected visual acuity. In the removed dystrophic DMs, MPM analyses revealed collagen rearrangement in addition to loss of endothelial cells and the development of guttae. MPM analyses of the whole patient's DM demonstrated this collagen remodeling in its entirety and facilitated correlation to Scheimpflug corneal tomography. In most DMs a unique honeycomb collagen network was identified, with distinct bundles surrounding the guttae and correlating with expression of fibrillar collagens (1A1). Conversely, some DMs showed either reduced collagen on MPM and RT-qPCR analysis or diffuse thickening and storage of extracellular matrix. Conclusions The collagen structure of the DM and its adaptive remodeling in endothelial corneal dystrophies has been characterized for the first time here and will facilitate individual therapeutic approaches.
Collapse
Affiliation(s)
- Marcus Walckling
- Department of Ophthalmology, University Medicine Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Trufanov SV, Fisenko NV. [Molecular genetic aspects of Fuchs' endothelial corneal dystrophy pathogenesis]. Vestn Oftalmol 2020; 136:260-267. [PMID: 33063975 DOI: 10.17116/oftalma2020136052260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fuchs' corneal dystrophy (FCD) is a common bilateral non-inflammatory endothelial pathology. It is a multigenic disorder with various expressivity, penetrance and population prevalence. This review discusses corneal endothelium pump function, FCD pathogenesis and its known genetic factors.
Collapse
Affiliation(s)
- S V Trufanov
- Research Institute of Eye Diseases, Moscow, Russia
| | - N V Fisenko
- Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
5
|
Bansal M, Tandon R, Saxena R, Sharma A, Sen S, Kishore A, Venkatesh P, Maiti S, Chakraborty D. Ophthalmic genetics practice and research in India: Vision in 2020. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:718-727. [PMID: 32865332 DOI: 10.1002/ajmg.c.31827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Ophthalmic genetics is a much needed and growing area in India. Ethnic diversity, with a high degree of consanguinity, has led to a high prevalence of genetic disorders in the country. As the second most populous country in the world, this naturally results in a significant number of affected people overall. Practice involves coherent association between ophthalmologists, genetic counselor and pediatricians. Eye genetics in India in recent times has witnessed advanced research using cutting edge diagnostics, next generation sequencing (NGS) approaches, stem cell therapies, gene therapy and genomic editing. This article will highlight the studies reporting genetic variations in the country, challenges in practice, and the latest advances in ophthalmic genetic research in India.
Collapse
Affiliation(s)
- Mayank Bansal
- Council for Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Delhi, India.,Department of Ophthalmology, Fortis Memorial Research Institute, Gurugram, India
| | - Radhika Tandon
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rohit Saxena
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Arundhati Sharma
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sagnik Sen
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alisha Kishore
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pradeep Venkatesh
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Souvik Maiti
- Council for Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Debojyoti Chakraborty
- Council for Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| |
Collapse
|
6
|
Five Novel Mutations in LOXHD1 Gene Were Identified to Cause Autosomal Recessive Nonsyndromic Hearing Loss in Four Chinese Families. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1685974. [PMID: 32149082 PMCID: PMC7049443 DOI: 10.1155/2020/1685974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/17/2020] [Indexed: 01/31/2023]
Abstract
Hearing loss is one of the most common sensory disorders in newborns and is mostly caused by genetic factors. Autosomal recessive nonsyndromic hearing loss (ARNSHL) is usually characterized as a severe-to-profound congenital sensorineural hearing loss and later can cause various degrees of defect in the language and intelligent development of newborns. The mutations in LOXHD1 gene have been shown to cause DFNB77, a type of ARNSHL. To date, there are limited reports about the association between LOXHD1 gene and ARNSHL. In this study, we reported six patients from four Chinese families suffering from severe-to-profound nonsyndromic hearing loss. We performed targeted next generation sequencing in the six affected members and identified five novel pathogenic mutations in LOXHD1 including c.277G>A (p.D93N), c.611-2A>T, c.1255+3A>G, c.2329C>T (p.Q777 ∗ ), and c.5888delG (p.G1963Afs ∗ 136). These mutations were confirmed to be cosegregated with the hearing impairment in the families by Sanger sequencing and were inherited in an autosomal recessive pattern. All of the five mutations were absent in 200 control subjects. There were no symptoms of Fuchs corneal dystrophy in the probands and their blood-related relatives. We concluded that these five novel mutations could be involved in the underlying mechanism resulting in the hearing loss, and this discovery expands the genotypic spectrum of LOXHD1 mutations.
Collapse
|
7
|
Fuchs endothelial corneal dystrophy and corneal endothelial diseases: East meets West. Eye (Lond) 2019; 34:427-441. [PMID: 31267087 DOI: 10.1038/s41433-019-0497-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/21/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is amongst one of the most common indications for endothelial keratoplasty worldwide. Despite being originally described among Caucasians, it is now known to be prevalent among a large number of populations, including Asians. While the FECD phenotype is classically described as that of central guttate and pigment deposits associated with corneal endothelial dysfunction, there are subtle yet important differences in how FECD and its phenocopies may present in Caucasians vs Asians. Such differences are paralled by genotypic variations and disease management preferences which appear to be geographically and ethnically delineated. This article provides a succinct review of such differences, with a focus on diagnostic and management issues which may be encountered by ophthalmologists practicing in the different geographic regions, when evaluating a patient with FECD.
Collapse
|
8
|
Shen N, Wang T, Li D, Liu A, Lu Y. Whole-exome sequencing identifies a novel missense variant within LOXHD1 causing rare hearing loss in a Chinese family. BMC MEDICAL GENETICS 2019; 20:30. [PMID: 30760222 PMCID: PMC6373029 DOI: 10.1186/s12881-019-0758-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/22/2019] [Indexed: 11/10/2022]
Abstract
Background Deafness, autosomal recessive 77 (DFNB77) is a rare non-syndromic hearing loss (NSHL) worldwide, which is caused by deleterious variants within lipoxygenase homology domains 1 (LOXHD1). Here we identified that a novel missense variant of LOXHD1 was associated with NSHL in a Chinese family under consanguineous marriage. Case presentation A 28-year-old woman suffered a bilateral profound NSHL. Impedance audiometry, temporal bone computerized tomography (TBCT) scans and magnetic resonance imaging-inner ear hydrography (MRI-IEH) did not find any obvious abnormality of middle or inner ear. Routine genetic detection did not find pathogenic variants in common HL-associated genes. Therefore, we performed a whole-exome sequencing (WES) in this family. By trio-WES, co-segregation validation and bioinformatics analysis, we revealed that a novel homozygous variant in this patient, LOXHD1: c.5948C > T (p.S1983F), might be the pathogenic factor. Her parents (heterozygotes) and brother (wild-type) were asymptomatic. Conclusions We successfully identified a novel variant of LOXHD1 associated with a rare NSHL from a Chinese family. Our finds highlight the effectiveness of trio-WES for molecular diagnosis of rare NHSL, and expand the genotypic spectrum of DFNB77. Electronic supplementary material The online version of this article (10.1186/s12881-019-0758-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Delei Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiguo Liu
- Department of Otorhinolaryngology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|