1
|
Ren X, Huang L, Cheng S, Wang J, Li N. Novel pathogenic variants of SLC38A8 gene and literature review. Eur J Ophthalmol 2024; 34:1740-1749. [PMID: 38515398 DOI: 10.1177/11206721241242155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
PURPOSE This study aimed to analyze the clinical and genetic characteristics of 6 Chinese patients with foveal hypoplasia (FH) caused by the variants of solute carrier family 38 member 8 (SLC38A8), and to describe the genotype and phenotype of SLC38A8 variants from previous literature. METHODS All subjects underwent comprehensive ophthalmic examinations. Optical coherence tomography (OCT) was performed to evaluate the structural grade of FH. Pathogenic variants of SLC38A8 gene were identified using panel-based next-generation sequencing and direct Sanger sequencing techniques. Further, all previously reported cases of SLC38A8 variants were re-analyzed together with the novel ones identified in this study. RESULTS Nystagmus and FH were present in 6 patients with variants of SLC38A8 gene, accompanied by a normal anterior segment. Grade 4 FH was identified in 4 patients. A total of 12 variants of SLC38A8 gene were identified, including 9 novel variants. Systematical analysis revealed that half of the variants (30/60) were missense, the majority of which (23/30) were distributed in the transmembrane (TM) domains. Grade 4 FH was detected in the majority of patients (66%, 23/35). There was no statistical difference in the clinical features between the subgroups of patients with 0, 1 and 2 missense variants. CONCLUSION Severe arrest of foveal development was identified in patients with variants of SLC38A8. This study provides a brief summary of the clinical and genetic characteristics of the pathogenic SLC38A8 variants, which is helpful in the differentiation diagnosis of FH.
Collapse
Affiliation(s)
- Xiaofang Ren
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nanlishi Road, Xicheng District, Beijing, 100040, China
| | - Lijuan Huang
- Department of Ophthalmology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, China
| | - Shan Cheng
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ningdong Li
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nanlishi Road, Xicheng District, Beijing, 100040, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai, China
| |
Collapse
|
2
|
Lopez Soriano V, Dueñas Rey A, Mukherjee R, Coppieters F, Bauwens M, Willaert A, De Baere E. Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci. Nat Commun 2024; 15:1600. [PMID: 38383453 PMCID: PMC10881467 DOI: 10.1038/s41467-024-45381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Cross-species genome comparisons have revealed a substantial number of ultraconserved non-coding elements (UCNEs). Several of these elements have proved to be essential tissue- and cell type-specific cis-regulators of developmental gene expression. Here, we characterize a set of UCNEs as candidate CREs (cCREs) during retinal development and evaluate the contribution of their genomic variation to rare eye diseases, for which pathogenic non-coding variants are emerging. Integration of bulk and single-cell retinal multi-omics data reveals 594 genes under potential cis-regulatory control of UCNEs, of which 45 are implicated in rare eye disease. Mining of candidate cis-regulatory UCNEs in WGS data derived from the rare eye disease cohort of Genomics England reveals 178 ultrarare variants within 84 UCNEs associated with 29 disease genes. Overall, we provide a comprehensive annotation of ultraconserved non-coding regions acting as cCREs during retinal development which can be targets of non-coding variation underlying rare eye diseases.
Collapse
Affiliation(s)
- Victor Lopez Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | - Frauke Coppieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
3
|
Kavalaraki A, Paraskevopoulos K, Kavalaraki M, Karakosta C, Liaskou M. Foveal Hypoplasia in a Child With Tyrosinase-Positive Albinism. Cureus 2023; 15:e44558. [PMID: 37790023 PMCID: PMC10544804 DOI: 10.7759/cureus.44558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2023] [Indexed: 10/05/2023] Open
Abstract
The purpose of this article is to report a case of bilateral foveal hypoplasia in an eight-year-old girl who presented to the ophthalmology department due to poor vision in both eyes. Clinical examination revealed bilateral nystagmus, decreased vision, as well as iris transillumination. Dilated fundus examination indicated the absence of light reflex around the foveal area and optical coherence tomography (OCT) imaging exhibited the absence of the fovea centralis depression. These findings, in addition to the patient's light-colored hair and skin complexion, raised suspicion for albinism. The patient was referred for genetic testing and the results confirmed the diagnosis of tyrosinase-positive oculocutaneous albinism (OCA2).
Collapse
Affiliation(s)
| | | | | | | | - Maria Liaskou
- Ophthalmology, Penteli General Children's Hospital, Athens, GRC
| |
Collapse
|
4
|
Xu J, Chen Y, Chen H, Wang J, Yan T, Yu X, Ye L, Xu M, Xu S, Yu H, Deng R, Zheng Y, Yang Y, Chen Q, Yu X, Liu Y, Liang Y, Gu F. Best-corrected visual acuity results facilitate molecular diagnosis of infantile nystagmus patients harboring FRMD7 mutations. Exp Eye Res 2023:109567. [PMID: 37423457 DOI: 10.1016/j.exer.2023.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 05/25/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The visual function of patients with infantile nystagmus (IN) can be significantly decreased owing to constant eye movement. While, reaching a definitive diagnosis becomes a challenge due to genetic heterozygous of this disease. To address it, we investigated whether best-corrected visual acuity (BCVA) results can facilitate the molecular diagnosis of IN patients harboring FRMD7 mutations. 200 patients with IN from 55 families and 133 sporadic cases were enrolled. Mutations were comprehensively screened by direct sequencing using gene-specific primers for FRMD7. We also retrieved related literature to verify the results based on our data. We found that the BCVA of patients with IN harboring FRMD7 mutations was between 0.5 and 0.7, which was confirmed by data retrieved from the literature. Our results showed that BCVA results facilitate the molecular diagnosis of patients with IN harboring FRMD7 mutations. In addition, we identified 31 FRMD7 mutations from the patients, including six novel mutations, namely, frameshift mutation c.1492_1493insT (p.Y498LfsTer14), splice-site mutation c.353C > G, three missense mutations [c.208C > G (p.P70A), c.234G > A (p.M78I), and c.1109G > A (p.H370R)], and nonsense mutation c.1195G > T (p.E399Ter). This study demonstrates that BCVA results may facilitate the molecular diagnosis of IN patients harboring FRMD7 mutations.
Collapse
Affiliation(s)
- Jinling Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yamin Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Haoran Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jiahua Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Tong Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xudong Yu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Liang Ye
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Meiping Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Suzhong Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Huanyun Yu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Ruzhi Deng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yihan Zheng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yeqin Yang
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xinping Yu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yong Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yuanbo Liang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China; The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China.
| |
Collapse
|