1
|
Mbachu CNP, Mbachu II, Hagerman R. A Comprehensive Review of Fragile X Syndrome and Fragile X Premutation Associated Conditions in Africa. Genes (Basel) 2024; 15:683. [PMID: 38927619 PMCID: PMC11203117 DOI: 10.3390/genes15060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Fragile X syndrome (FXS) is a genetic disorder caused by a mutation in the fragile X messenger ribonucleoprotein 1 (FMR1) gene and known to be a leading cause of inherited intellectual disability globally. It results in a range of intellectual, developmental, and behavioral problems. Fragile X premutation-associated conditions (FXPAC), caused by a smaller CGG expansion (55 to 200 CGG repeats) in the FMR1 gene, are linked to other conditions that increase morbidity and mortality for affected persons. Limited research has been conducted on the burden, characteristics, diagnosis, and management of these conditions in Africa. This comprehensive review provides an overview of the current literature on FXS and FXPAC in Africa. The issues addressed include epidemiology, clinical features, discrimination against affected persons, limited awareness and research, and poor access to resources, including genetic services and treatment programs. This paper provides an in-depth analysis of the existing worldwide data for the diagnosis and treatment of fragile X disorders. This review will improve the understanding of FXS and FXPAC in Africa by incorporating existing knowledge, identifying research gaps, and potential topics for future research to enhance the well-being of individuals and families affected by FXS and FXPAC.
Collapse
Affiliation(s)
- Chioma N. P. Mbachu
- Department of Paediatrics, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi 435101, Nigeria
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA
| | - Ikechukwu Innocent Mbachu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi 435101, Nigeria;
| | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
2
|
Lo Piccolo L, Yeewa R, Pohsa S, Yamsri T, Calovi D, Phetcharaburanin J, Suksawat M, Kulthawatsiri T, Shotelersuk V, Jantrapirom S. FAME4-associating YEATS2 knockdown impairs dopaminergic synaptic integrity and leads to seizure-like behaviours in Drosophila melanogaster. Prog Neurobiol 2024; 233:102558. [PMID: 38128822 DOI: 10.1016/j.pneurobio.2023.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) is a neurological disorder caused by a TTTTA/TTTCA intronic repeat expansion. FAME4 is one of the six types of FAME that results from the repeat expansion in the first intron of the gene YEATS2. Although the RNA toxicity is believed to be the primary mechanism underlying FAME, the role of genes where repeat expansions reside is still unclear, particularly in the case of YEATS2 in neurons. This study used Drosophila to explore the effects of reducing YEATS2 expression. Two pan-neuronally driven dsDNA were used for knockdown of Drosophila YEATS2 (dYEATS2), and the resulting molecular and behavioural outcomes were evaluated. Drosophila with reduced dYEATS2 expression exhibited decreased tolerance to acute stress, disturbed locomotion, abnormal social behaviour, and decreased motivated activity. Additionally, reducing dYEATS2 expression negatively affected tyrosine hydroxylase (TH) gene expression, resulting in decreased dopamine biosynthesis. Remarkably, seizure-like behaviours induced by knocking down dYEATS2 were rescued by the administration of L-DOPA. This study reveals a novel role of YEATS2 in neurons in regulating acute stress responses, locomotion, and complex behaviours, and suggests that haploinsufficiency of YEATS2 may play a role in FAME4.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Daniel Calovi
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
| | - Jutarop Phetcharaburanin
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaporn Kulthawatsiri
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Kargar M, Hagerman RJ, Martínez-Cerdeño V. Neurodegeneration of White and Gray Matter in the Hippocampus with FXTAS. Int J Mol Sci 2023; 24:17266. [PMID: 38139097 PMCID: PMC10743470 DOI: 10.3390/ijms242417266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects older premutation carriers (55-200 CGG repeats) of the fragile X gene. Despite the high prevalence of the FXTAS disorder, neuropathology studies of individuals affected by FXTAS are limited. We performed hematoxylin and eosin (H&E) staining in the hippocampus of 26 FXTAS cases and analyzed the tissue microscopically. The major neuropathological characteristics were white matter disease, intranuclear inclusions in neurons and astrocytes, and neuron loss. Astrocytes contained more and larger inclusions than neurons. There was a negative correlation between age of death and CGG repeat length in cases over the age of 60. The number of astroglial inclusions (CA3 and dentate gyrus) and the number of CA3 neuronal inclusions increased with elevated CGG repeat length. In the two cases with a CGG repeat size less than 65, FXTAS intranuclear inclusions were not present in the hippocampus, while in the two cases with less than 70 (65-70) CGG repeat expansion, neurons and astrocytes with inclusions were occasionally identified in the CA1 sub-region. These findings add hippocampus neuropathology to the previously reported changes in other areas of the brain in FXTAS patients, with implications for understanding FXTAS pathogenesis.
Collapse
Affiliation(s)
- Maryam Kargar
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Randi J. Hagerman
- MIND Institute, UC Davis School of Medicine, Sacramento, CA 95817, USA;
| | - Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA 95817, USA;
| |
Collapse
|
4
|
Robertson-Dick EE, Timm EC, Pal G, Ouyang B, Liu Y, Berry-Kravis E, Hall DA, O’Keefe JA. Digital gait markers to potentially distinguish fragile X-associated tremor/ataxia syndrome, Parkinson's disease, and essential tremor. Front Neurol 2023; 14:1308698. [PMID: 38162443 PMCID: PMC10755476 DOI: 10.3389/fneur.2023.1308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Background Fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disease that affects carriers of a 55-200 CGG repeat expansion in the fragile X messenger ribonucleoprotein 1 (FMR1) gene, may be given an incorrect initial diagnosis of Parkinson's disease (PD) or essential tremor (ET) due to overlapping motor symptoms. It is critical to characterize distinct phenotypes in FXTAS compared to PD and ET to improve diagnostic accuracy. Fast as possible (FP) speed and dual-task (DT) paradigms have the potential to distinguish differences in gait performance between the three movement disorders. Therefore, we sought to compare FXTAS, PD, and ET patients using quantitative measures of functional mobility and gait under self-selected (SS) speed, FP, and DT conditions. Methods Participants with FXTAS (n = 22), PD (n = 23), ET (n = 20), and controls (n = 20) underwent gait testing with an inertial sensor system (APDM™). An instrumented Timed Up and Go test (i-TUG) was used to measure movement transitions, and a 2-min walk test (2MWT) was used to measure gait and turn variables under SS, FP, and DT conditions, and dual-task costs (DTC) were calculated. ANOVA and multinomial logistic regression analyses were performed. Results PD participants had reduced stride lengths compared to FXTAS and ET participants under SS and DT conditions, longer turn duration than ET participants during the FP task, and less arm symmetry than ET participants in SS gait. They also had greater DTC for stride length and velocity compared to FXTAS participants. On the i-TUG, PD participants had reduced sit-to-stand peak velocity compared to FXTAS and ET participants. Stride length and arm symmetry index during the DT 2MWT was able to distinguish FXTAS and ET from PD, such that participants with shorter stride lengths were more likely to have a diagnosis of PD and those with greater arm asymmetry were more likely to be diagnosed with PD. No gait or i-TUG parameters distinguished FXTAS from ET participants in the regression model. Conclusion This is the first quantitative study demonstrating distinct gait and functional mobility profiles in FXTAS, PD, and ET which may assist in more accurate and timely diagnosis.
Collapse
Affiliation(s)
- Erin E. Robertson-Dick
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Emily C. Timm
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Gian Pal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, United States
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Joan A. O’Keefe
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
5
|
Elias-Mas A, Potrony M, Bague J, Cutler DJ, Alvarez-Mora MI, Torres T, Barcos T, Puig-Butille JA, Rubio M, Madrigal I, Puig S, Allen EG, Rodriguez-Revenga L. Evaluation of AQP4 functional variants and its association with fragile X-associated tremor/ataxia syndrome. Front Aging Neurosci 2023; 14:1073258. [PMID: 36688175 PMCID: PMC9853890 DOI: 10.3389/fnagi.2022.1073258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Fragile X-associated tremor/ataxia syndrome (FXTAS, OMIM# 300623) is a late-onset neurodegenerative disorder with reduced penetrance that appears in adult FMR1 premutation carriers (55-200 CGGs). Clinical symptoms in FXTAS patients usually begin with an action tremor. After that, different findings including ataxia, and more variably, loss of sensation in the distal lower extremities and autonomic dysfunction, may occur, and gradually progress. Cognitive deficits are also observed, and include memory problems and executive function deficits, with a gradual progression to dementia in some individuals. Aquaporin 4 (AQP4) is a commonly distributed water channel in astrocytes of the central nervous system. Changes in AQP4 activity and expression have been implicated in several central nervous system disorders. Previous studies have suggested the associations of AQP4 single nucleotide polymorphisms (SNPs) with brain-water homeostasis, and neurodegeneration disease. To date, this association has not been studied in FXTAS. Methods To investigate the association of AQP4 SNPs with the risk of presenting FXTAS, a total of seven common AQP4 SNPs were selected and genotyped in 95 FMR1 premutation carriers with FXTAS and in 65 FMR1 premutation carriers without FXTAS. Results The frequency of AQP4-haplotype was compared between groups, denoting 26 heterozygous individuals and 5 homozygotes as carriers of the minor allele in the FXTAS group and 25 heterozygous and 2 homozygotes in the no-FXTAS group. Statistical analyses showed no significant associations between AQP4 SNPs/haplotypes and development of FXTAS. Discussion Although AQP4 has been implicated in a wide range of brain disorders, its involvement in FXTAS remains unclear. The identification of novel genetic markers predisposing to FXTAS or modulating disease progression is critical for future research involving predictors and treatments.
Collapse
Affiliation(s)
- Andrea Elias-Mas
- Radiology Department, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
- Institute for Research and Innovation Parc Taulí (I3PT), Sabadell, Spain
- Genetics Doctorate Program, Universitat de Barcelona (UB), Barcelona, Spain
| | - Miriam Potrony
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Jaume Bague
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - David J. Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Teresa Torres
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Tamara Barcos
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Anton Puig-Butille
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Molecular Biology CORE, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Marta Rubio
- Institute for Research and Innovation Parc Taulí (I3PT), Sabadell, Spain
- Department of Neurology, Parc Taulí Hospital Universitari, Sabadell, Spain
| | - Irene Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Susana Puig
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Emily G. Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
6
|
Chen Y, Guo L, Han M, Zhang S, Chen Y, Zou J, Bai S, Cheng G, Zeng Y. Cerebellum Neuropathology and Motor Skill Deficits in Fragile X Syndrome. Int J Dev Neurosci 2022; 82:557-568. [DOI: 10.1002/jdn.10217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yu‐shan Chen
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Liu Guo
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Man Han
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Si‐ming Zhang
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Yi‐qi Chen
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Jia Zou
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Shu‐yuan Bai
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Gui‐rong Cheng
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, School of Medicine Wuhan University of Science and Technology Wuhan China
| |
Collapse
|
7
|
Movement disorders and neuropathies: overlaps and mimics in clinical practice. J Neurol 2022; 269:4646-4662. [PMID: 35657406 DOI: 10.1007/s00415-022-11200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Movement disorders as well as peripheral neuropathies are extremely frequent in the general population; therefore, it is not uncommon to encounter patients with both these conditions. Often, the coexistence is coincidental, due to the high incidence of common causes of peripheral neuropathy, such as diabetes and other age-related disorders, as well as of Parkinson disease (PD), which has a typical late onset. Nonetheless, there is broad evidence that PD patients may commonly develop a sensory and/or autonomic polyneuropathy, triggered by intrinsic and/or extrinsic mechanisms. Similarly, some peripheral neuropathies may develop some movement disorders in the long run, such as tremor, and rarely dystonia and myoclonus, suggesting that central mechanisms may ensue in the pathogenesis of these diseases. Although rare, several acquired or hereditary causes may be responsible for the combination of movement and peripheral nerve disorders as a unique entity, some of which are potentially treatable, including paraneoplastic, autoimmune and nutritional aetiologies. Finally, genetic causes should be pursued in case of positive family history, young onset or multisystemic involvement, and examined for neuroacanthocytosis, spinocerebellar ataxias, mitochondrial disorders and less common causes of adult-onset cerebellar ataxias and spastic paraparesis. Deep phenotyping in terms of neurological and general examination, as well as laboratory tests, neuroimaging, neurophysiology, and next-generation genetic analysis, may guide the clinician toward the correct diagnosis and management.
Collapse
|
8
|
Famula J, Ferrer E, Hagerman RJ, Tassone F, Schneider A, Rivera SM, Hessl D. Neuropsychological changes in FMR1 premutation carriers and onset of fragile X-associated tremor/ataxia syndrome. J Neurodev Disord 2022; 14:23. [PMID: 35321639 PMCID: PMC8942145 DOI: 10.1186/s11689-022-09436-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background Carriers of the FMR1 premutation are at increased risk of developing a late-onset progressive neurodegenerative disease, fragile X-associated tremor/ataxia syndrome (FXTAS), characterized by intention tremor, gait ataxia, and cognitive decline. Cross-sectional studies to date have provided evidence that neuropsychological changes, such as executive function alterations, or subtle motor changes, may precede the onset of formal FXTAS, perhaps characterizing a prodromal state. However, the lack of longitudinal data has prevented the field from forming a clear picture of progression over time within individuals, and we lack consensus regarding early markers of risk and measures that may be used to track response to intervention. Methods This was a longitudinal study of 64 male FMR1 premutation carriers (Pm) without FXTAS at study entry and 30 normal controls (Nc), aged 40 to 80 years (Pm M = 60.0 years; Nc M = 57.4 years). Fifty of the Pm and 22 of the Nc were re-assessed after an average of 2.33 years, and 37 Pm and 20 Nc were re-assessed a third time after an average of another 2.15 years. Eighteen of 64 carriers (28%) converted to FXTAS during the study to date. Neuropsychological assessments at each time point, including components of the Cambridge Neuropsychological Test Automated Battery (CANTAB), tapped domains of episodic and working memory, inhibitory control, visual attention, planning, executive control of movement, and manual speed and dexterity. Age-based mixed models were used to examine group differences in change over time on the outcomes in the full sample, and differences were further evaluated in 15 trios (n = 45; 15 Pm “converters,” 15 Pm “nonconverters,” 15 Nc) that were one-one matched on age, education, and socioeconomic status. Results Compared to Nc, Pm showed significantly greater rates of change over time in visual working memory, motor dexterity, inhibitory control, and manual movement speed. After multiple comparison correction, significant effects remained for motor dexterity. Worsening inhibitory control and slower manual movements were related to progression in FXTAS stage, but these effects became statistically non-significant after correcting for multiple comparisons. Higher FMR1 mRNA correlated with worsening manual reaction time but did not survive multiple comparisons and no other molecular measures correlated with neuropsychological changes. Finally, trio comparisons revealed greater rate of decline in planning and manual movement speed in Pm converters compared to Pm nonconverters. Conclusions Accelerated decline in executive function and subtle motor changes, likely mediated by frontocerebellar circuits, may precede, and then track with the emergence of formal FXTAS symptoms. Further research to develop and harmonize clinical assessment of FMR1 carriers across centers is needed to prepare for future prophylactic and treatment trials for this disorder.
Collapse
Affiliation(s)
- Jessica Famula
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Emilio Ferrer
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Randi J Hagerman
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Susan M Rivera
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Psychology, University of California Davis, Davis, CA, USA.,Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - David Hessl
- MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA. .,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
9
|
Frequency of FMR1 Premutation Alleles in Patients with Undiagnosed Cerebellar Ataxia and Multiple System Atrophy in the Japanese Population. CEREBELLUM (LONDON, ENGLAND) 2021; 21:954-962. [PMID: 34845661 DOI: 10.1007/s12311-021-01329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 10/19/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder caused by FMR1 premutation expansion of CGG repeats. FXTAS can be misdiagnosed with many neurodegenerative disorders manifesting with cerebellar ataxias owing to their overlapping clinical and radiological features. The frequency of the FMR1 premutation allele in Japan has not been fully determined. Herein, we aimed to determine the frequency of FMR1 premutation alleles in Japanese patients with undiagnosed cerebellar ataxia and multiple system atrophy, using repeat-primed PCR in 186 patients with adult onset of undiagnosed cerebellar ataxia and 668 patients with multiple system atrophy, to identify expanded CGG repeats as well as to detect AGG interruptions within the expanded alleles. The size of expansions was estimated using fragment length analysis of PCR products obtained by conventional PCR employing a pair of unique primers flanking the repeat sequence. We identified FMR1 premutation alleles in three male patients. One patient revealed 84 repeat units with one AGG interruption and another patient showed 103 repeat units. Both had presented with sporadic cerebellar ataxia, giving an estimated frequency of 3.7% among Japanese male patients with sporadic cerebellar ataxia with age at onset above 50 years. One patient with the clinical diagnosis of multiple system atrophy harbored 60 repeat units with four AGG interruptions. FMR1 intermediate alleles were observed in two males and one female among the multiple system atrophy patients. We found that genetic tests for FMR1 premutation should be considered in Japanese male patients with cerebellar ataxia with the age at onset above 50 years.
Collapse
|
10
|
'Essential Tremor' Phenotype in FMR1 Premutation/Gray Zone Sibling Series: Exploring Possible Genetic Modifiers. Twin Res Hum Genet 2021; 24:95-102. [PMID: 33757613 DOI: 10.1017/thg.2021.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) occurs in carriers of fragile X mental retardation 1 (FMR1) X-linked small CGG expansion (gray zone [GZ] and premutation [PM]) alleles, containing 41-200 repeats. Major features comprise kinetic tremor, gait ataxia, cognitive decline and cerebellar peduncular white matter lesions, but atypical/incomplete FXTAS may occur. We explored the possibility of polygenic effects modifying the FXTAS spectrum phenotypes. We used three motor scales and selected cognitive tests in a series of three males and three females from a single sibship carrying PM or GZ alleles (44 to 75 repeats). The molecular profiles from these siblings were determined by genomewide association study with single-nucleotide polymorphism (SNP) genotyping by Illumina Global Screening Array. Nonparametric linkage analysis was applied and Parkinson's disease (PD) polygenic risk scores (PRSs) were calculated for all the siblings, based on 107 known risk variants. All male and female siblings manifested similar kinetic tremor phenotypes. In contrast to FXTAS, they showed negligible gait ataxia, and few white matter lesions on MRI. Cognitive functioning was unaffected. Suggestive evidence of linkage to a broad region of the short arm of chromosome 10 was obtained, and median PD PRS for the sibship fell within the top 30% of a sample of over 500,000 UK and Australian controls. The genomewide study results are suggestive of modifying effects of genetic risk loci linked to PD, on the neurological phenotype of FMR1-CGG small expansion carriers, resulting in an oligosymptomatic kinetic tremor seen in FXTAS spectrum, but also consistent with essential tremor.
Collapse
|
11
|
Zhang S, Gong Q, Wu D, Tian Y, Shen L, Lu J, Xu L, Gu H, Xu J, Liu W. Genetic and Pathological Characteristic Patterns of a Family With Neuronal Intranuclear Inclusion Disease. J Neuropathol Exp Neurol 2021; 79:1293-1302. [PMID: 33271601 DOI: 10.1093/jnen/nlaa142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare, progressive neurodegenerative disorder. This study aimed to investigate clinical, imaging, genetic, and dermatopathological characteristics of a family with adult-onset NIID. The proband was a 62-year-old woman with 3 brothers and 2 sisters. Of these, 4 had symptoms of paroxysmal visual field defect, extrapyramidal symptoms, dysautonomia, emotional changes, and cognitive dysfunction. Genetic examination revealed no abnormality related to cerebrovascular diseases. More than 200 CGG repeats of FMR1 gene cause fragile X-associated tremor/ataxia syndrome (FXTAS) whereas repeats of the proband were found 29 times, which excluded FXTAS. Quantitative reverse transcription polymerase chain reaction (PCR) and GC-rich-PCR identified an expanded GGC repeat (with ∼100 repeats) in the 5' region of NOTCH2NLC in the patient and her 2 younger brothers. Pathological examination found eosinophilic intranuclear inclusions inside adipocytes, fibrocytes, and sweat gland cells. Immunohistochemistry and immunofluorescence staining revealed positive staining for ubiquitin and p62. The detailed pathological and genetic features of this NIID family provide a valuable contribution to the existing knowledge base of this rare disorder.
Collapse
Affiliation(s)
- Shugang Zhang
- From the Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University
| | - Qixing Gong
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University
| | - Di Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu
| | - Yun Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Lu
- From the Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University
| | - Ligang Xu
- From the Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University
| | - Hao Gu
- From the Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University
| | - Jianxia Xu
- From the Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University
| | - Weiguo Liu
- From the Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University
| |
Collapse
|
12
|
Dijkstra AA, Haify SN, Verwey NA, Prins ND, van der Toorn EC, Rozemuller AJM, Bugiani M, den Dunnen WFA, Todd PK, Charlet-Berguerand N, Willemsen R, Hukema RK, Hoozemans JJM. Neuropathology of FMR1-premutation carriers presenting with dementia and neuropsychiatric symptoms. Brain Commun 2021; 3:fcab007. [PMID: 33709078 PMCID: PMC7936660 DOI: 10.1093/braincomms/fcab007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
CGG repeat expansions within the premutation range (55–200) of the FMR1 gene can lead to Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders. These CGG repeats are translated into a toxic polyglycine-containing protein, FMRpolyG. Pathology of Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders comprises FMRpolyG- and p62-positive intranuclear inclusions. Diagnosing a FMR1-premutation carrier remains challenging, as the clinical features overlap with other neurodegenerative diseases. Here, we describe two male cases with Fragile X-associated neuropsychiatric disorders-related symptoms and mild movement disturbances and novel pathological features that can attribute to the variable phenotype. Macroscopically, both donors did not show characteristic white matter lesions on MRI; however, vascular infarcts in cortical- and sub-cortical regions were identified. Immunohistochemistry analyses revealed a high number of FMRpolyG intranuclear inclusions throughout the brain, which were also positive for p62. Importantly, we identified a novel pathological vascular phenotype with inclusions present in pericytes and endothelial cells. Although these results need to be confirmed in more cases, we propose that these vascular lesions in the brain could contribute to the complex symptomology of FMR1-premutation carriers. Overall, our report suggests that Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders may present diverse clinical involvements resembling other types of dementia, and in the absence of genetic testing, FMRpolyG can be used post-mortem to identify premutation carriers.
Collapse
Affiliation(s)
- Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Saif N Haify
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Niek A Verwey
- Department of Neurology, Medisch Centrum Leeuwarden, Leeuwarden, The Netherlands
| | - Niels D Prins
- Department of Neurology, Alzheimer Center, VU University Medical Center, Amsterdam Neuroscience, The Netherlands.,Brain Research Center, Amsterdam, The Netherlands
| | | | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Department of Veterans Affairs, Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400, Illkirch, France
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands.,Department of Health Care Studies, Rotterdam University of Applied Sciences, Rotterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Grigioni G, Saleh C, Jaszczuk P, Wand D, Wilmes S, Hund-Georgiadis M. Fragile-X-Associated Tremor/Ataxia Syndrome or Alcohol-Induced Cerebellar Degeneration? A Case Report. Case Rep Neurol 2020; 12:466-471. [PMID: 33442376 PMCID: PMC7772861 DOI: 10.1159/000511954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022] Open
Abstract
Fragile-X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that manifests with intention tremor, progressive gait ataxia, and cognitive impairment. The disease is genetically characterized by a premutation of the FMR1gene on the X-chromosome manifesting with a CGG triplet expansion between 55 and 200. Given the phenotypical variety of this disease, diagnosis is frequently delayed. We present and discuss a male patient whose diagnosis of FXTAS was delayed due to his concomitant alcohol abuse.
Collapse
Affiliation(s)
- Giulia Grigioni
- REHAB Basel, Clinic for Neurorehabilitation and Paraplegiology, Basel, Switzerland
| | - Christian Saleh
- Department of Neurophysiology and Neurology, University Hospital Basel, Basel, Switzerland
| | - Phillip Jaszczuk
- REHAB Basel, Clinic for Neurorehabilitation and Paraplegiology, Basel, Switzerland
| | - Dorothea Wand
- Department of Medical Genetic and Pathology, University Hospital of Basel, Basel, Switzerland
| | - Stefanie Wilmes
- REHAB Basel, Clinic for Neurorehabilitation and Paraplegiology, Basel, Switzerland
| | | |
Collapse
|
14
|
O'Keefe JA, Guan J, Robertson E, Biskis A, Joyce J, Ouyang B, Liu Y, Carnes D, Purcell N, Berry-Kravis E, Hall DA. The Effects of Dual Task Cognitive Interference and Fast-Paced Walking on Gait, Turns, and Falls in Men and Women with FXTAS. THE CEREBELLUM 2020; 20:212-221. [PMID: 33118140 DOI: 10.1007/s12311-020-01199-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a genetic neurodegenerative disorder characterized by cerebellar ataxia, tremor, and cognitive dysfunction. We examined the impact of dual-task (DT) cognitive-motor interference and fast-paced (FP) gait on gait and turning in FXTAS. Thirty participants with FXTAS and 35 age-matched controls underwent gait analysis using an inertial sensor-based 2-min walk test under three conditions: (1) self-selected pace (ST), (2) FP, and (3) DT with a concurrent verbal fluency task. Linear regression analyses were performed to assess the association between FXTAS diagnosis and gait and turn outcomes. Correlations between gait variables and fall frequency were also calculated. FXTAS participants had reduced stride length and velocity, swing time, and peak turn velocity and greater double limb support time and number of steps to turn compared to controls under all three conditions. There was greater dual task cost of the verbal fluency task on peak turn velocity in men with FXTAS compared to controls. Additionally, stride length variability was increased and cadence was reduced in FXTAS participants in the FP condition. Stride velocity variability under FP gait was significantly associated with the number of self-reported falls in the last year. Greater motor control requirements for turning likely made men with FXTAS more susceptible to the negative effects of DT cognitive interference. FP gait exacerbated gait deficits in the domains of rhythm and variability, and increased gait variability with FP was associated with increased falls. These data may inform the design of rehabilitation strategies in FXTAS.
Collapse
Affiliation(s)
- Joan A O'Keefe
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Joseph Guan
- Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Erin Robertson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Alexandras Biskis
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jessica Joyce
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Danielle Carnes
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Nicollette Purcell
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
- Departments of Pediatrics and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
15
|
O'Keefe JA, Bang D, Robertson EE, Biskis A, Ouyang B, Liu Y, Pal G, Berry‐Kravis E, Hall DA. Prodromal Markers of Upper Limb Deficits in FMR1 Premutation Carriers and Quantitative Outcome Measures for Future Clinical Trials in Fragile X-associated Tremor/Ataxia Syndrome. Mov Disord Clin Pract 2020; 7:810-819. [PMID: 33043077 PMCID: PMC7533995 DOI: 10.1002/mdc3.13045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a rare, late-onset neurodegenerative disorder characterized by tremor and cerebellar gait ataxia, affecting premutation carriers (PMC) of CGG expansions (range, 55-200) in the fragile X mental retardation 1 (FMR1) gene. Discovery of early predictors for FXTAS and quantitative characterization of motor deficits are critical for identifying disease onset, monitoring disease progression, and determining efficacy of interventions. METHODS A total of 39 PMC with FXTAS, 20 PMC without FXTAS, and 27 healthy controls performed a series of upper extremity (UE) motor tasks assessing tremor, bradykinesia, and rapid alternating movements that were quantified using an inertial-based sensor system (Kinesia One; Great Lakes NeuroTechnologies, Cleveland, OH, USA). Sub-scores from the clinician-rated FXTAS Rating Scale were correlated with the severity scores generated by the sensor system to determine its validity in FXTAS. RESULTS PMC with FXTAS had significantly worse postural and kinetic tremor compared with PMC without FXTAS (P = 0.02, 0.03) and controls (P = 0.001, 0.0001), respectively, and slower finger tap (P = 0.001), hand movement (P = 0.0001), and rapid alternating movement speed (P = 0.003) and amplitude (P = 0.04) than controls. PMC without FXTAS had significantly worse right finger tap (P = 0.004), hand movement (P = 0.01), and rapid alternating movement speed (P = 0.003) and amplitude (P = 0.02) than controls. FXTAS Rating Scale subscores significantly correlated with all tremorography scores except for finger taps and left rapid alternating movement. CONCLUSIONS These findings support the use of inertial sensor quantification systems as promising measures for preclinical FXTAS symptom detection in PMC, characterization of the natural history of FXTAS, assessment of medication responses, and outcome assessment in clinical trials.
Collapse
Affiliation(s)
- Joan A. O'Keefe
- Department of Cell & Molecular MedicineRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Deborah Bang
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Erin E. Robertson
- Department of Cell & Molecular MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Alexandras Biskis
- Department of Cell & Molecular MedicineRush University Medical CenterChicagoIllinoisUSA
- Department of PediatricsRush University Medical CenterChicagoIllinoisUSA
| | - Bichun Ouyang
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Yuanqing Liu
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Gian Pal
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Elizabeth Berry‐Kravis
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of BiochemistryRush University Medical CenterChicagoIllinoisUSA
| | - Deborah A. Hall
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
16
|
Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Pathophysiology and Clinical Implications. Int J Mol Sci 2020; 21:ijms21124391. [PMID: 32575683 PMCID: PMC7352421 DOI: 10.3390/ijms21124391] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder seen in older premutation (55-200 CGG repeats) carriers of FMR1. The premutation has excessive levels of FMR1 mRNA that lead to toxicity and mitochondrial dysfunction. The clinical features usually begin in the 60 s with an action or intention tremor followed by cerebellar ataxia, although 20% have only ataxia. MRI features include brain atrophy and white matter disease, especially in the middle cerebellar peduncles, periventricular areas, and splenium of the corpus callosum. Neurocognitive problems include memory and executive function deficits, although 50% of males can develop dementia. Females can be less affected by FXTAS because of a second X chromosome that does not carry the premutation. Approximately 40% of males and 16% of female carriers develop FXTAS. Since the premutation can occur in less than 1 in 200 women and 1 in 400 men, the FXTAS diagnosis should be considered in patients that present with tremor, ataxia, parkinsonian symptoms, neuropathy, and psychiatric problems. If a family history of a fragile X mutation is known, then FMR1 DNA testing is essential in patients with these symptoms.
Collapse
|
17
|
Torres EB, Caballero C, Mistry S. Aging with Autism Departs Greatly from Typical Aging. SENSORS 2020; 20:s20020572. [PMID: 31968701 PMCID: PMC7014496 DOI: 10.3390/s20020572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023]
Abstract
Autism has been largely portrayed as a psychiatric and childhood disorder. However, autism is a lifelong neurological condition that evolves over time through highly heterogeneous trajectories. These trends have not been studied in relation to normative aging trajectories, so we know very little about aging with autism. One aspect that seems to develop differently is the sense of movement, inclusive of sensory kinesthetic-reafference emerging from continuously sensed self-generated motions. These include involuntary micro-motions eluding observation, yet routinely obtainable in fMRI studies to rid images of motor artifacts. Open-access repositories offer thousands of imaging records, covering 5-65 years of age for both neurotypical and autistic individuals to ascertain the trajectories of involuntary motions. Here we introduce new computational techniques that automatically stratify different age groups in autism according to probability distance in different representational spaces. Further, we show that autistic cross-sectional population trajectories in probability space fundamentally differ from those of neurotypical controls and that after 40 years of age, there is an inflection point in autism, signaling a monotonically increasing difference away from age-matched normative involuntary motion signatures. Our work offers new age-appropriate stochastic analyses amenable to redefine basic research and provide dynamic diagnoses as the person's nervous systems age.
Collapse
Affiliation(s)
- Elizabeth B. Torres
- Psychology Department Center for Biomedicine Imaging and Modelling, CS Department and Rutgers Center for Cognitive Science, Rutgers University, Camden, NJ 08854, USA
- Correspondence: ; Tel.: +1-732-208-3158
| | - Carla Caballero
- Sports Science Department, Miguel Hernandez University of Elche, 03202 Alicante, Spain;
| | - Sejal Mistry
- Biomathematics Department, Rutgers University, Camden, NJ 08854, USA;
| |
Collapse
|
18
|
Fay-Karmon T, Hassin-Baer S. The spectrum of tremor among carriers of the FMR1 premutation with or without the fragile X-associated tremor/ataxia syndrome (FXTAS). Parkinsonism Relat Disord 2019; 65:32-38. [DOI: 10.1016/j.parkreldis.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
19
|
Famula JL, McKenzie F, McLennan YA, Grigsby J, Tassone F, Hessl D, Rivera SM, Martinez-Cerdeno V, Hagerman RJ. Presence of Middle Cerebellar Peduncle Sign in FMR1 Premutation Carriers Without Tremor and Ataxia. Front Neurol 2018; 9:695. [PMID: 30186228 PMCID: PMC6113389 DOI: 10.3389/fneur.2018.00695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/31/2018] [Indexed: 11/23/2022] Open
Abstract
Here we report five cases of male FMR1 premutation carriers who present without clinical symptoms of the fragile X-associated tremor/ataxia syndrome (FXTAS), but who on MRI demonstrate white matter hyperintensities in the middle cerebellar peduncles (MCP sign) and other brain regions, a rare finding. MCP sign is the major radiological feature of FXTAS; it is therefore remarkable to identify five cases in which this MRI finding is present in the absence of tremor and ataxia, the major clinical features of FXTAS. Subjects underwent a detailed neurological evaluation, neuropsychological testing, molecular testing, and MRI evaluation utilizing T2 imaging described here. Additional white matter disease was present in the corpus callosum in four of the five cases. However, all cases were asymptomatic for motor signs of FXTAS.
Collapse
Affiliation(s)
- Jessica L Famula
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Forrest McKenzie
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Yingratana A McLennan
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - James Grigsby
- School of Medicine, University of Colorado, Denver, CO, United States
| | - Flora Tassone
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Susan M Rivera
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychology, University of California Davis, Davis, CA, United States
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, Sacramento, CA, United States.,Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| | - Randi J Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
20
|
Dave A, Hawley J. Fragile X–tremor/ataxia syndrome: five areas of new development. FUTURE NEUROLOGY 2017. [DOI: 10.2217/fnl-2017-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fragile X–tremor/ataxia syndrome is a relatively newly discovered movement disorder usually affecting patients over the age of 50 who have a FMR1 gene with 55–200 CGG repeats. Patients present with tremor and ataxia and possibly executive dysfunction and peripheral neuropathy. Fragile X–tremor/ataxia syndrome patients have several unique MRI findings including white matter lesions of the middle cerebellar peduncle and splenium of the corpus callosum. The genetics and treatment of this condition are co-developing rapidly as we search for more therapeutic modalities to offer these patients. We will present the latest information available regarding this fascinating syndrome and provide our hypothesis regarding the future focus of research.
Collapse
Affiliation(s)
- Ajal Dave
- Department of Neurology, Walter Reed National Military Medical Center, America BLDG 19 4954 North Palmer Rd, Bethesda, MD 20889–5630, USA
| | - Jason Hawley
- Department of Neurology, Walter Reed National Military Medical Center, America BLDG 19 4954 North Palmer Rd, Bethesda, MD 20889–5630, USA
| |
Collapse
|