1
|
Cutolo EA, Campitiello R, Caferri R, Pagliuca VF, Li J, Agathos SN, Cutolo M. Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia. Mar Drugs 2024; 22:304. [PMID: 39057413 PMCID: PMC11278107 DOI: 10.3390/md22070304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. Thanks to present-day, large-scale bioprospecting and rigorous screening for bioactive metabolites, the ocean is coming back as an untapped resource of natural compounds with therapeutic potential. This renewed interest in marine drugs is propelled by a burgeoning research field investigating the molecular mechanisms by which newly identified compounds intervene in the pathophysiology of human diseases. Of great clinical relevance are molecules endowed with anti-inflammatory and immunomodulatory properties with emerging applications in the management of chronic inflammatory disorders, autoimmune diseases, and cancer. Here, we review the historical development of marine pharmacology in the Eastern and Western worlds and describe the status of marine drug discovery. Finally, we discuss the importance of conducting sustainable exploitation of marine resources through biotechnology.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Vittorio Flavio Pagliuca
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Jian Li
- Qingdao Innovation and Development Base, Harbin Engineering University, No. 1777 Sansha Road, Qingdao 150001, China; (J.L.); (S.N.A.)
| | - Spiros Nicolas Agathos
- Qingdao Innovation and Development Base, Harbin Engineering University, No. 1777 Sansha Road, Qingdao 150001, China; (J.L.); (S.N.A.)
- Bioengineering Laboratory, Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
2
|
Santos TCD, Obando JMC, Leite PEC, Pereira MR, Leitão MDF, Abujadi C, Pimenta LDFL, Martins RCC, Cavalcanti DN. Approaches of marine compounds and relevant immune mediators in Autism Spectrum Disorder: Opportunities and challenges. Eur J Med Chem 2024; 266:116153. [PMID: 38277916 DOI: 10.1016/j.ejmech.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects social skills, language, communication, and behavioral skills, significantly impacting the individual's quality of life. Recently, numerous works have centered on the connections between the immune and central nervous systems and the influence of neuroinflammation on autism symptomatology. Marine natural products are considered as important alternative sources of different types of compounds, including polysaccharides, polyphenols, sterols, carotenoids, terpenoids and, alkaloids. These compounds present anti-inflammatory, neuroprotective and immunomodulatory activities, exhibiting a potential for the treatment of many diseases. Although many studies address the marine compounds in the modulation of inflammatory mediators, there is a gap regarding their use in the regulation of the immune system in ASD. Thus, this review aims to provide a better understanding regarding cytokines, chemokines, growth factors and immune responses in ASD, as well as the potential of bioactive marine compounds in the immune regulation in ASD. We expect that this review would contribute to the development of therapeutic alternatives for controlling immune mediators and inflammation in ASD.
Collapse
Affiliation(s)
- Thalisia Cunha Dos Santos
- Programa de Pós-graduação em Química de Produtos Naturais, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Johana Marcela Concha Obando
- Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paulo Emílio Corrêa Leite
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Instituto LisMAPS, Niterói, RJ, Brazil
| | - Mariana Rodrigues Pereira
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Instituto LisMAPS, Niterói, RJ, Brazil; Programa de Pós-graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Mônica de Freitas Leitão
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Camp), Campinas, SP, Brazil
| | - Caio Abujadi
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Roberto Carlos Campos Martins
- Programa de Pós-graduação em Química de Produtos Naturais, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diana Negrão Cavalcanti
- Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
3
|
Alves J, Gaspar H, Silva J, Alves C, Martins A, Teodoro F, Susano P, Pinteus S, Pedrosa R. Unravelling the Anti-Inflammatory and Antioxidant Potential of the Marine Sponge Cliona celata from the Portuguese Coastline. Mar Drugs 2021; 19:632. [PMID: 34822503 PMCID: PMC8625174 DOI: 10.3390/md19110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is a double-edged sword, as it can have both protective effects and harmful consequences, which, combined with oxidative stress (OS), can lead to the development of deathly chronic inflammatory conditions. Over the years, research has evidenced the potential of marine sponges as a source of effective anti-inflammatory therapeutic agents. Within this framework, the purpose of this study was to evaluate the antioxidant and the anti-inflammatory potential of the marine sponge Cliona celata. For this purpose, their organic extracts (C1-C5) and fractions were evaluated concerning their radical scavenging activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and anti-inflammatory activity through a (lipopolysaccharides (LPS)-induced inflammation on RAW 264.7 cells) model. Compounds present in the two most active fractions (F5 and F13) of C4 were tentatively identified by gas chromatography coupled to mass spectrometry (GC-MS). Even though samples displayed low antioxidant activity, they presented a high anti-inflammatory capacity in the studied cellular inflammatory model when compared to the anti-inflammatory standard, dexamethasone. GC-MS analysis led to the identification of n-hexadecanoic acid, cis-9-hexadecenal, and 13-octadecenal in fraction F5, while two major compounds, octadecanoic acid and cholesterol, were identified in fraction F13. The developed studies demonstrated the high anti-inflammatory activity of the marine sponge C. celata extracts and fractions, highlighting its potential for further therapeutic applications.
Collapse
Affiliation(s)
- Joana Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Joana Silva
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Escola Superior de Turismo e Tecnologia do Mar, Politécnico de Leiria, 2520-614 Peniche, Portugal;
| | - Fernando Teodoro
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, Escola Superior de Turismo e Tecnologia do Mar, Politécnico de Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
4
|
Immunomodulatory effect of Echinometra Mathaeis҆ coelomic fluid extract combined with gonad and coelomic extract solely on protoscolices of hydatid cysts in-vitro. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
6
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
7
|
6-Bromoindole Derivatives from the Icelandic Marine Sponge Geodia barretti: Isolation and Anti-Inflammatory Activity. Mar Drugs 2018; 16:md16110437. [PMID: 30413031 PMCID: PMC6266195 DOI: 10.3390/md16110437] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
An UPLC-qTOF-MS-based dereplication study led to the targeted isolation of seven bromoindole alkaloids from the sub-Arctic sponge Geodia barretti. This includes three new metabolites, namely geobarrettin A–C (1–3) and four known compounds, barettin (4), 8,9-dihydrobarettin (5), 6-bromoconicamin (6), and l-6-bromohypaphorine (7). The chemical structures of compounds 1–7 were elucidated by extensive analysis of the NMR and HRESIMS data. The absolute stereochemistry of geobarrettin A (1) was assigned by ECD analysis and Marfey’s method employing the new reagent l-Nα-(1-fluoro-2,4-dinitrophenyl)tryptophanamide (l-FDTA). The isolated compounds were screened for anti-inflammatory activity using human dendritic cells (DCs). Both 2 and 3 reduced DC secretion of IL-12p40, but 3 concomitantly increased IL-10 production. Maturing DCs treated with 2 or 3 before co-culturing with allogeneic CD4+ T cells decreased T cell secretion of IFN-γ, indicating a reduction in Th1 differentiation. Although barettin (4) reduced DC secretion of IL-12p40 and IL-10 (IC50 values 11.8 and 21.0 μM for IL-10 and IL-12p40, respectively), maturing DCs in the presence of 4 did not affect the ability of T cells to secrete IFN-γ or IL-17, but reduced their secretion of IL-10. These results indicate that 2 and 3 may be useful for the treatment of inflammation, mainly of the Th1 type.
Collapse
|
8
|
Lee JY, Kim GJ, Choi JK, Choi YA, Jeong NH, Park PH, Choi H, Kim SH. 4-(Hydroxymethyl)catechol Extracted From Fungi in Marine Sponges Attenuates Rheumatoid Arthritis by Inhibiting PI3K/Akt/NF-κB Signaling. Front Pharmacol 2018; 9:726. [PMID: 30079020 PMCID: PMC6062625 DOI: 10.3389/fphar.2018.00726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease specific to synovial joints; it causes joint damage and other systemic abnormalities, thereby leading to physical disability and early mortality. Marine sponge-derived fungi, Pestalotiopsis sp., secrete immunosuppressive compounds in the culture broth. In the present study, we isolated 4-(hydroxymethyl)catechol (4-HMC) from these fungal species, and evaluated its anti-RA effects using a murine collagen-induced arthritis model and tumor necrosis factor-α-stimulated human RA synovial fibroblasts. Oral 4-HMC administration decreased the clinical arthritis score, paw thickness, histologic and radiologic changes, and serum IgG1 and IgG2a levels. It prevented the proliferation of helper T (Th) 1/Th17 CD4+ lymphocytes isolated from inguinal lymph nodes, thereby reducing inflammatory cytokine production in CIA mice. It decreased the expression of inflammatory mediators, including cytokines and matrix metalloproteinases (MMPs), both in vitro and in vivo. We observed that 4-HMC suppresses Th immune responses and MMP expression to inhibit inflammatory cytokine production in human RA synovial fibroblasts by modulating the PI3K/Akt/NF-κB pathway. These results verify the anti-RA potential of 4-HMC.
Collapse
Affiliation(s)
- Jong Y Lee
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Geum J Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Jin K Choi
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea.,Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Young-Ae Choi
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Na-Hee Jeong
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
9
|
Marine natural products for multi-targeted cancer treatment: A future insight. Biomed Pharmacother 2018; 105:233-245. [PMID: 29859466 DOI: 10.1016/j.biopha.2018.05.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022] Open
Abstract
Cancer is world's second largest alarming disease, which involves abnormal cell growth and have potential to spread to other parts of the body. Most of the available anticancer drugs are designed to act on specific targets by altering the activity of involved transporters and genes. As cancer cells exhibit complex cellular machinery, the regeneration of cancer tissues and chemo resistance towards the therapy has been the main obstacle in cancer treatment. This fact encourages the researchers to explore the multitargeted use of existing medicines to overcome the shortcomings of chemotherapy for alternative and safer treatment strategies. Recent developments in genomics-proteomics and an understanding of the molecular pharmacology of cancer have also challenged researchers to come up with target-based drugs. The literature supports the evidence of natural compounds exhibiting antioxidant, antimitotic, anti-inflammatory, antibiotic as well as anticancer activity. In this review, we have selected marine sponges as a prolific source of bioactive compounds which can be explored for their possible use in cancer and have tried to link their role in cancer pathway. To prove this, we revisited the literature for the selection of cancer genes for the multitargeted use of existing drugs and natural products. We used Cytoscape network analysis and Search tool for retrieval of interacting genes/ proteins (STRING) to study the possible interactions to show the links between the antioxidants, antibiotics, anti-inflammatory and antimitotic agents and their targets for their possible use in cancer. We included total 78 pathways, their genes and natural compounds from the above four pharmacological classes used in cancer treatment for multitargeted approach. Based on the Cytoscape network analysis results, we shortlist 22 genes based on their average shortest path length connecting one node to all other nodes in a network. These selected genes are CDKN2A, FH, VHL, STK11, SUFU, RB1, MEN1, HRPT2, EXT1, 2, CDK4, p14, p16, TSC1, 2, AXIN2, SDBH C, D, NF1, 2, BHD, PTCH, GPC3, CYLD and WT1. The selected genes were analysed using STRING for their protein-protein interactions. Based on the above findings, we propose the selected genes to be considered as major targets and are suggested to be studied for discovering marine natural products as drug lead in cancer treatment.
Collapse
|