1
|
Zhao BY, Zhang J, Zhao KY, Song Y, Shi YJ, Zeng L, Zeng X, Sheng YG, Luo Y. Effect of Ginkgo tablets on the pharmacokinetics of metoprolol in rats: liquid chromatography-tandem mass spectrometry-based study. Am J Transl Res 2024; 16:5114-5121. [PMID: 39398601 PMCID: PMC11470355 DOI: 10.62347/wusg1450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVES This study aimed to assess the interaction between metoprolol and Ginkgo tablets during their co-administration to provide a reference for clinical prescribing. METHODS The co-administration of metoprolol (20 mg/kg) and Ginkgo tablets (2.4 mg/kg) was conducted in adult Sprague Dawley (SD) rats (n = 8). An optimized liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the analysis of plasma metoprolol to evaluate its pharmacokinetics. In vitro, the rat liver microsomes were employed to assess the effect of Ginkgo tablets on the metabolic stability of metoprolol and the activity of Cytochrome P450 2D6 (CYP2D6). RESULTS The developed LC-MS/MS method was demonstrated of high sensitivity, accuracy, and precision. When co-administered with Ginkgo tablets, it increased the area under the curve (AUC, 59.01 ± 10.11 vs. 39.19 ± 10.21 μg/mL × min), the maximum plasma concentration (Cmax, 461.72 ± 44.64 vs. 276.35 ± 118.09 ng/mL), and the half-life (t1/2, 302.83 ± 91.52 vs. 262.34 ± 111.12 min) of metoprolol in rats and reduced the clearance rate (0.346 ± 0.057 vs. 0.539 ± 0.145 L/min/kg). In vitro, Ginkgo tablets improved the metabolic stability of metoprolol and suppressed the activity of CYP2D6 in a concentration-dependent manner with the IC50 value of 11.17 μM. CONCLUSION Co-administration of metoprolol with Ginkgo tablets resulted in increasing its systemic exposure through inhibiting CYP2D6 activity.
Collapse
Affiliation(s)
- Bai-Yun Zhao
- Drug Clinical Trial Institution, Hangzhou Normal University Affiliated HospitalHangzhou, Zhejiang, China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical UniversityJining, Shandong, China
| | - Kai-Yue Zhao
- Department of Medicine, Hangzhou Normal University Affiliated HospitalHangzhou, Zhejiang, China
| | - Yu Song
- Department of Translational Medicine Centre, Hangzhou Normal University Affiliated HospitalHangzhou, Zhejiang, China
| | - Ya-Juan Shi
- Department of Translational Medicine Centre, Hangzhou Normal University Affiliated HospitalHangzhou, Zhejiang, China
| | - Ling Zeng
- Drug Clinical Trial Institution, Hangzhou Normal University Affiliated HospitalHangzhou, Zhejiang, China
| | - Xin Zeng
- Department of Traditional Chinese Pharmacy, China Pharmaceutical University SchoolNanjing, Jiangsu, China
| | - Ying-Gen Sheng
- Department of Pharmaceutics, Hangzhou Normal University Affiliated HospitalHangzhou, Zhejiang, China
| | - Yan Luo
- Department of Translational Medicine Centre, Hangzhou Normal University Affiliated HospitalHangzhou, Zhejiang, China
| |
Collapse
|
2
|
Prasanna Kumari Rayala VVS, Shantilal Shinde R, Kumar A, Radhakrishnanand P. Evaluation of pharmacokinetic herb-drug interaction of diabecon and losartan by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1245:124267. [PMID: 39126994 DOI: 10.1016/j.jchromb.2024.124267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The diabecon is an ayurvedic herbal formulation that contains a mixture of herbs traditionally used as antidiabetic which is reported in the ayurvedic pharmacopeia of India and Indian Materia medica. The diabetic population has a common co-morbidity of hypertension for which losartan drug is commonly used for the treatment of hypertension. However, there is a lack of research on the pharmacokinetics interaction between diabecon and losartan. This research aims to investigate the influence of diabecon on the pharmacokinetics of losartan drugs in rats by establishing a highly sensitive ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-MS/MS) method. The method was validated according to the USFDA guidelines and was applied for the pharmacokinetic study. The lowest concentration of losartan detection in rat plasma was found to be 1 ng/mL and the accuracy and precision were within the linear range (1-1500 ng/mL). The results revealed that after 28 days of dosing diabecon, it has altered the pharmacokinetic parameters like area under the curve (AUC0-t), drug clearance (Cl/F), and rate of elimination (Ke) of losartan, which may happen due to enzyme induction. Although there was a change in the pharmacokinetic parameters of losartan when administered in the presence of diabecon, it was found to be nonsignificant in rats (p > 0.05). According to the best of our knowledge, this is the first article that discusses the pharmacokinetic herb-drug interaction between diabecon and losartan.
Collapse
Affiliation(s)
- V V S Prasanna Kumari Rayala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Rushikesh Shantilal Shinde
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Abhay Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India.
| |
Collapse
|
3
|
Nyulas KI, Simon-Szabó Z, Pál S, Fodor MA, Dénes L, Cseh MJ, Barabás-Hajdu E, Csipor B, Szakács J, Preg Z, Germán-Salló M, Nemes-Nagy E. Cardiovascular Effects of Herbal Products and Their Interaction with Antihypertensive Drugs-Comprehensive Review. Int J Mol Sci 2024; 25:6388. [PMID: 38928095 PMCID: PMC11203894 DOI: 10.3390/ijms25126388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Hypertension is a highly prevalent population-level disease that represents an important risk factor for several cardiovascular complications and occupies a leading position in mortality statistics. Antihypertensive therapy includes a wide variety of drugs. Additionally, the potential antihypertensive and cardioprotective effects of several phytotherapy products have been evaluated, as these could also be a valuable therapeutic option for the prevention, improvement or treatment of hypertension and its complications. The present review includes an evaluation of the cardioprotective and antihypertensive effects of garlic, Aloe vera, green tea, Ginkgo biloba, berberine, ginseng, Nigella sativa, Apium graveolens, thyme, cinnamon and ginger, and their possible interactions with antihypertensive drugs. A literature search was undertaken via the PubMed, Google Scholar, Embase and Cochrane databases. Research articles, systematic reviews and meta-analyses published between 2010 and 2023, in the English, Hungarian, and Romanian languages were selected.
Collapse
Affiliation(s)
- Kinga-Ilona Nyulas
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Sándor Pál
- Department of Laboratory Medicine, Department of Transfusion Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary
| | - Márta-Andrea Fodor
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Lóránd Dénes
- Department of Anatomy and Embryology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Margit Judit Cseh
- Master Program of Nutrition and Dietetics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Enikő Barabás-Hajdu
- Department of Cell Biology and Microbiology, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Bernadett Csipor
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Juliánna Szakács
- Department of Biophysics, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Zoltán Preg
- Department of Family Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Márta Germán-Salló
- Department of Internal Medicine III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania;
| |
Collapse
|
4
|
Huang Y, Xue M. Combination of losartan and puerarin induced pharmacokinetic interaction in hypertension rats and enhances the antihypertensive effect of losartan. Xenobiotica 2023:1-6. [PMID: 37114483 DOI: 10.1080/00498254.2023.2207639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The co-administration of losartan and puerarin in hypertension rat models was investigated aiming to evaluate their interaction and potential mechanism.Hypertension rat models were established with N (omega)-nitro-L-arginine methyl ester and the pharmacokinetics and antihypertensive effect of losartan were analyzed in normal and hypertension rats. In vitro, the metabolic stability of losartan was evaluated in rat liver microsomes, and the effect of puerarin on the activity of CYP2C9 and 3A4 was assessed in human liver microsomes.Puerarin significantly changed the pharmacokinetic profiling of losartan in hypertension rats behavior with the increasing AUC, AUMC, Cmax, and prolonged t1/2. The antihypertensive effect of losartan was enhanced by the co-administration of puerarin, which reduced the systolic blood pressure and diastolic blood pressure below normal levels. In vitro, puerarin significantly improved the metabolic stability of losartan with a reduced intrinsic clearance rate. Puerarin also showed significant inhibitory effects on the activity of CYP2C9 and 3A4 with the IC50 of 17.15 and 7.69 μM, respectively.Losartan co-administered with puerarin increased the system exposure and metabolic stability of losartan and enhanced its antihypertensive effect. The inhibition of CYP2C9 and 3A4 by puerarin was the potential mechanism mediating their interaction.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejinag 325000, China
| | - Minglei Xue
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejinag 325000, China
| |
Collapse
|
5
|
Gómez-Garduño J, León-Rodríguez R, Alemón-Medina R, Pérez-Guillé BE, Soriano-Rosales RE, González-Ortiz A, Chávez-Pacheco JL, Solorio-López E, Fernandez-Pérez P, Rivera-Espinosa L. Phytochemicals That Interfere With Drug Metabolism and Transport, Modifying Plasma Concentration in Humans and Animals. Dose Response 2022; 20:15593258221120485. [PMID: 36158743 PMCID: PMC9500303 DOI: 10.1177/15593258221120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Phytochemicals (Pch) present in fruits, vegetables and other foods, are known to inhibit or induce drug metabolism and transport. An exhaustive search was performed in five databases covering from 2000 to 2021. Twenty-one compounds from plants were found to modulate CYP3A and/or P-gp activities and modified the pharmacokinetics and the therapeutic effect of 27 different drugs. Flavonols, flavanones, flavones, stilbenes, diferuloylmethanes, tannins, protoalkaloids, flavans, hyperforin and terpenes, reduce plasma concentration of cyclosporine, simvastatin, celiprolol, midazolam, saquinavir, buspirone, everolimus, nadolol, tamoxifen, alprazolam, verapamil, quazepam, digoxin, fexofenadine, theophylline, indinavir, clopidogrel. Anthocyanins, flavonols, flavones, flavanones, flavonoid glycosides, stilbenes, diferuloylmethanes, catechin, hyperforin, alkaloids, terpenes, tannins and protoalkaloids increase of plasma concentration of buspirone, losartan, diltiazem, felodipine, midazolam, cyclosporine, triazolam, verapamil, carbamazepine, diltiazem, aripiprazole, tamoxifen, doxorubicin, paclitaxel, nicardipine. Interactions between Pchs and drugs affect the gene expression and enzymatic activity of CYP3A and P-gp transporter, which has an impact on their bioavailability; such that co-administration of drugs with food, beverages and food supplements can cause a subtherapeutic effect or overdose. Therefore, it is important for the clinician to consider these interactions to obtain a better therapeutic effect.
Collapse
Affiliation(s)
| | - Renato León-Rodríguez
- Laboratorio de Contención Biológica BSL-3, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Niu Z, Qiang T, Lin W, Li Y, Wang K, Wang D, Wang X. Evaluation of Potential Herb-Drug Interactions Between Shengmai Injection and Losartan Potassium in Rat and In Vitro. Front Pharmacol 2022; 13:878526. [PMID: 35517807 PMCID: PMC9065348 DOI: 10.3389/fphar.2022.878526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: The present study aimed to explore the potential herb-drug interactions (HDI) between Shengmai injection (SMI) and losartan potassium (LOS) based on the expression profiles of cytochromes P450 (CYP450) and drug transporters in rat and in vitro. Methods: Different concentrations of SMI were used to explore the influence of SMI on the antihypertensive efficacy of LOS in the hypertension rat model established by N (omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks. Subsequently, the serum concentration levels of LOS and losartan carboxylic acid (EXP3174) were determined by Liquid Chromatography Mass Spectrometry (LC-MS) and pharmacokinetic analysis. Human liver microsomes, human multidrug resistance protein 1 (MDR1/P-gp), and breast cancer resistance protein (BCRP) vesicles, human embryonic kidney 293 cell line with stable expression of the organic anion transporting polypeptide 1B1 (HEK293-OATP1B1 cells) and mock-transfected HEK293 (HEK293-MOCK) cells were used to verify the effects of SMI on CYP450 enzymes and drug transporters in vitro. Results: Low, medium, and high concentrations of SMI increased the antihypertensive efficacy of LOS to varying degrees. The high dose SMI increased the half-life (t 1/2 ), the maximum plasma concentration (C max), the area under the plasma concentration-time curve (AUC) from time zero to the time of the last measurable plasma concentration (AUC 0-t ), AUC from time zero to infinity (AUC 0-∞ ), and mean residence time (MRT) values of LOS and decreased its apparent volume of distribution (Vd) and clearance (CL) values. The AUC 0-t , AUC 0-∞ , and MRT of LOS were increased, whereas the CL was decreased by the medium concentration of SMI. In addition, the high, medium, and low doses of SMI increased the relative bioavailability (Frel) of LOS. SMI exhibited no significant effects on the pharmacokinetics of EXP3174. In vitro, SMI exhibited different suppressive effects on the enzyme activity levels of CYP1A2 (6.12%), CYP2B6 (2.72%), CYP2C9 (14.31%), CYP2C19 (12.96%), CYP2D6 (12.26%), CYP3A4 (3.72%), CYP2C8 (10.00-30.00%), MDR1 (0.75%), OATP1B1(2.03%), and BCRP (0.15%). Conclusion: In conclusion, SMI improved the antihypertensive efficacy of LOS in the L-NAME-induced hypertension rat model by increasing the concentration of LOS, while leaving the concentration of EXP3174 intact. SMI affected the pharmacokinetic properties of LOS by decreasing the elimination of LOS. These effects might partly be attributed to the inhibition of the activities of CYP3A4, CYP2C9, and of the drug transporters (P-gp, BCRP, and OATP1B1) by SMI, which need further scrutiny.
Collapse
Affiliation(s)
- Zhenchao Niu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Qiang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyong Lin
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Keyan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Wei S, Sun J, Li Y, Xu K, Wang M, Zhang Y. Losartan Attenuates Atherosclerosis in Uremic Mice by Regulating Treg/Th17 Balance via Mediating PTEN/PI3K/Akt Pathway. Nephron Clin Pract 2022; 146:528-538. [PMID: 35176745 DOI: 10.1159/000521770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Uremia could accelerate atherosclerosis (AS) formation involving Treg/Th17 imbalance. Losartan regulates the imbalance between regulatory T cells (Treg cells) and T helper 17 cells (Th17 cells). However, their interactions in uremia accelerated AS (UAAS) remained poorly understood. METHODS UAAS mice model was established, and after losartan and VO-OHpic (VO, phosphatase and tensin homolog [PTEN] inhibitor) injection, biological indexes, and inflammatory cytokines (transforming growth factor-β1, TGF-β1; interleukin-10 [IL-10]; IL-17 and IL-6) levels were determined using enzyme-linked immunosorbent assay. Pathological changes on aorta were observed using hematoxylin-eosin staining. Percentages of Treg cells (CD4+CD25+Foxp3+) and Th17 cells (CD4+IL-17+) in total CD4+ T cells were determined using flow cytometry. PTEN expressions were measured using Western blot, quantitative real-time polymerase chain reaction, and immunohistochemistry staining as needed. RESULTS After UAAS mice model construction, biological indexes (urea, cholesterol, and triglycerides) levels were increased, and aortic atherosclerotic plaque was formed. In UAAS mice, in total CD4+ T cells, Treg cells percentage was decreased yet Th17 cells percentage was increased, and TGF-β1 and IL-10 levels were downregulated yet IL-17 and IL-6 levels were upregulated. An opposite effect was found after losartan treatment. PTEN was downregulated in UAAS mice, and suppressing PTEN reversed the alleviating effects of losartan in UAAS mice. CONCLUSION Losartan attenuated UAAS in mice by regulating Treg/Th17 cells balance via mediating PTEN/PI3K/Akt pathway, providing possible therapeutic method for UAAS in clinical practice.
Collapse
Affiliation(s)
- Shanzhai Wei
- Department of Nephrology, Shuyang Hospital of TCM, Suqian, China
| | - Jie Sun
- Department of Nephrology, Shuyang Hospital of TCM, Suqian, China
| | - Yibei Li
- Department of Nephrology, Shuyang Hospital of TCM, Suqian, China
| | - Kangchun Xu
- Department of Nephrology, Shuyang Hospital of TCM, Suqian, China
| | - Man Wang
- Department of Nephrology, Shuyang Hospital of TCM, Suqian, China
| | - Yilai Zhang
- Department of Nephrology, Shuyang Hospital of TCM, Suqian, China
| |
Collapse
|
8
|
Zhang J, Liu L, Li H, Zhang B. Pharmacokinetic study on the interaction between pachymic acid and bavachin and its potential mechanism. PHARMACEUTICAL BIOLOGY 2021; 59:1256-1259. [PMID: 34517743 PMCID: PMC8439242 DOI: 10.1080/13880209.2021.1942924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Pachymic acid and bavachin are commonly used drugs in the therapy of lung cancer. OBJECTIVE The co-administration of pachymic acid and bavachin was investigated to evaluate their potential drug-drug interaction. MATERIALS AND METHODS The pharmacokinetics of bavachin (10 mg/kg) was studied in male Sprague-Dawley (SD) rats in the presence of pachymic acid (5 mg/kg) (n = 6). The rats without pre-treatment of pachymic acid were set as the control and the pre-treatment of pachymic acid was conducted for 7 days before the administration of bavachin. The effect of pachymic acid on the activity of CYP2C9 was also estimated in rat liver microsomes with corresponding probe substrates. RESULTS Pachymic acid influenced the pharmacokinetic profile of bavachin with the increased AUC (32.82 ± 4.61 vs. 19.43 ± 3.26 μg/L/h), the prolonged t1/2 (3.21 ± 0.65 vs. 2.32 ± 0.28 h), and the decreased CLz/F (307.25 ± 44.35 vs. 523.81 ± 88.67 L/h/kg) in vivo. The metabolic stability of bavachin was enhanced by pachymic acid and the transport of bavachin was inhibited by pachymic acid. Pachymic acid was found to inhibit the activity of CYP2C9 with the IC50 of 21.25 µM as well as the activity of P-gp. DISCUSSION AND CONCLUSION The interaction between pachymic acid and bavachin results from the inhibition of CYP2C9 and P-gp. The dose of bavachin should be adjusted when combining with pachymic acid. The study design can be generalized to a broader study population with adjustment in the dose.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicinal Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Hong Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Zhang
- Department of Medicinal Medicine, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|