1
|
Gui L, Zhang Z, Song L, Feng C, Yu H, Pan L, Fu J, Liang W, Huang Q, El-Sappah AH, Shi L, Wan L, Wei S. Mitogenome of Uncaria rhynchophylla: genome structure, characterization, and phylogenetic relationships. BMC Genomics 2025; 26:199. [PMID: 40012082 DOI: 10.1186/s12864-025-11372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/16/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Uncaria rhynchophylla is listed in the Chinese pharmacopoeia as one of the five botanical sources of the traditional medicine Gou-Teng, which has been utilized for the treatment of mental and cardiovascular disorders. This particular species is well-known in China for its hook-like structures originating from the leaf axils. Despite available reports on its chloroplast genome, there persists a notable lack of understanding concerning the structural variations and evolution of its mitochondrial genome. This knowledge gap hinders our ability to fully comprehend its genetic attributes. RESULTS We successfully assembled the mitochondrial genome of U. rhynchophylla by seamlessly integrating Illumina short reads with Nanopore long reads, resulting in a non-circular genome comprising 1 circular contig and 2 linear contigs. The total length of this genome is 421,660 bp, encompassing 36 PCGs. The identification of 4 distinct pairs of repeats has unveiled their pivotal role in repeat-mediated recombination. Of the 28 homologous fragments derived from chloroplasts, the majority were observed to have been transferred from the inverted repeat (IR) regions of the chloroplast genome to the mitochondrial genome. The mitochondrial DNA provides a distinctive resolution for the positioning of several species within the Gentianales phylogenetic framework, which remains unresolved by chloroplast DNA. CONCLUSION By utilizing a newly assembled, high-quality mitochondrial genome of U. rhynchophylla, we have elucidated its intricate genomic structure, distinctive sequence characteristics, and potential for phylogenetic analysis. These findings mark significant strides in advancing our comprehension of the genetics of Uncaria.
Collapse
Affiliation(s)
- Lingjian Gui
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Zhanjiang Zhang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Lisha Song
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | | | - Haixia Yu
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Limei Pan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jine Fu
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Wenjing Liang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Ahmed H El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Lijun Shi
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Lingyun Wan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Shugen Wei
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
2
|
Jiang Y, Wei S, Ge H, Zhang Y, Wang H, Wen X, Guo C, Wang S, Chen Z, Li P. Advances in the Identification Methods of Food-Medicine Homologous Herbal Materials. Foods 2025; 14:608. [PMID: 40002052 PMCID: PMC11853841 DOI: 10.3390/foods14040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
As a key component of both traditional medicine and modern healthcare, Food-Medicine Homologous Herbal Materials have attracted considerable attention in recent years. However, issues related to the quality and authenticity of medicinal materials on the market often arise, not only compromising their efficacy but also presenting potential risks to consumer health. Therefore, the establishment of accurate and efficient identification methods is crucial for ensuring the safety and quality of Food-Medicine Homologous Herbal Materials. This paper provides a systematic review of the research progress on the identification methods for Food-Medicine Homologous Herbal Materials, starting with traditional methods such as morphological and microscopic identification, and focusing on the applications of modern techniques, including biomimetic recognition, chromatography, mass spectrometry, chromatography-mass spectrometry coupling, hyperspectral imaging, near-infrared spectroscopy, terahertz spectroscopy, and DNA barcoding. Moreover, it provides a comprehensive analysis of the fundamental principles, advantages, and limitations of these methods. Finally, the paper outlines the current challenges faced by identification methods and suggests future directions for improvement, aiming to offer a comprehensive technical perspective on identifying Food-Medicine Homologous Herbal Materials and foster further development in this field.
Collapse
Affiliation(s)
- Yuying Jiang
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China;
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (S.W.); (H.G.); (Y.Z.); (H.W.); (X.W.); (C.G.); (S.W.); (Z.C.)
| | - Shilei Wei
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (S.W.); (H.G.); (Y.Z.); (H.W.); (X.W.); (C.G.); (S.W.); (Z.C.)
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongyi Ge
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (S.W.); (H.G.); (Y.Z.); (H.W.); (X.W.); (C.G.); (S.W.); (Z.C.)
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (S.W.); (H.G.); (Y.Z.); (H.W.); (X.W.); (C.G.); (S.W.); (Z.C.)
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Heng Wang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (S.W.); (H.G.); (Y.Z.); (H.W.); (X.W.); (C.G.); (S.W.); (Z.C.)
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xixi Wen
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (S.W.); (H.G.); (Y.Z.); (H.W.); (X.W.); (C.G.); (S.W.); (Z.C.)
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chunyan Guo
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (S.W.); (H.G.); (Y.Z.); (H.W.); (X.W.); (C.G.); (S.W.); (Z.C.)
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shun Wang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (S.W.); (H.G.); (Y.Z.); (H.W.); (X.W.); (C.G.); (S.W.); (Z.C.)
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhikun Chen
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (S.W.); (H.G.); (Y.Z.); (H.W.); (X.W.); (C.G.); (S.W.); (Z.C.)
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China;
| |
Collapse
|
3
|
Hai Y, Qian Y, Yang M, Zhang Y, Xu H, Yang Y, Xia C. The chloroplast genomes of two medicinal species (Veronica anagallis-aquatica L. and Veronica undulata Wall.) and its comparative analysis with related Veronica species. Sci Rep 2024; 14:13945. [PMID: 38886540 PMCID: PMC11183227 DOI: 10.1038/s41598-024-64896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Veronica anagallis-aquatica L. and Veronica undulata Wall. are widely used ethnomedicinal plants in China. The two species have different clinical efficacies, while their extremely similar morphology and unclear interspecific relationship make it difficult to accurately identify them, leading to increased instances of mixed usage. This article reports on the complete chloroplast genomes sequence of these two species and their related Veronica species to conduct a comparative genomics analysis and phylogenetic construction. The results showed that the chloroplast (cp) genomes of Veronica exhibited typical circular quadripartite structures, with total lengths of 149,386 to 152,319 base pairs (bp), and GC content of 37.9 to 38.1%, and the number of genes was between 129-134. The total number of simple sequence repeats (SSRs) in V. anagallis-aquatica and V. undulata is 37 and 36, while V. arvensis had the highest total number of 56, predominantly characterized by A/T single bases. The vast majority of long repeat sequence types are forward repeats and palindromic repeats. Selective Ka/Ks values showed that three genes were under positive selection. Sequence differences often occur in the non-coding regions of the large single-copy region (LSC) and small single-copy region (SSC), with the lowest sequence variation in the inverted repeat regions (IR). Seven highly variable regions (trnT-GGU-psbD, rps8-rpl16, trnQ-UUG, trnN-GUU-ndhF, petL, ycf3, and ycf1) were detected, which may be potential molecular markers for identifying V. anagallis-aquatica and V. undulata. The phylogenetic tree indicates that there is a close genetic relationship between the genera Veronica and Neopicrorhiza, and V. anagallis-aquatica and V. undulata are sister groups. The molecular clock analysis results indicate that the divergence time of Veronica may occur at ∼ 9.09 Ma, and the divergence time of these two species occurs at ∼ 0.48 Ma. It is speculated that climate change may be the cause of Veronica species diversity and promote the radiation of the genus. The chloroplast genome data of nine Veronica specie provides important insights into the characteristics and evolution of the chloroplast genome of this genus, as well as the phylogenetic relationships of the genus Veronica.
Collapse
Affiliation(s)
- Yonglin Hai
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Yan Qian
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Meihua Yang
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Yue Zhang
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Huimei Xu
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Yongcheng Yang
- College of Pharmacy, Dali University, Dali, 671000, China.
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China.
| | - Conglong Xia
- College of Pharmacy, Dali University, Dali, 671000, China.
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China.
| |
Collapse
|
4
|
Dai J, Liu Q, Xu X, Tan Z, Lin Y, Gao X, Zhu S. Comparative and phylogenetic analysis of the complete chloroplast genomes of Uncaria (Rubiaceae) species. FRONTIERS IN PLANT SCIENCE 2023; 14:1271689. [PMID: 38186595 PMCID: PMC10766718 DOI: 10.3389/fpls.2023.1271689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024]
Abstract
The genus Uncaria is famous for its high medicinal value. However, the high morphological similarities and unclear interspecific genetic relationships have posed challenges to the classification and identification of Uncaria species. Here, we newly sequenced six chloroplast genomes of Uncaria species: U. hirsuta, U. rhynchophylla, U. rhynchophylloides, U. homomalla, U. sinensis, and U. lancifolia. Comparisons among the chloroplast genomes of Uncaria species showed their conservation in structure, gene content, and order. Ten highly variable loci could be potentially used as specific molecular markers in the identification of Uncaria species. The third position of codons tended to use A/U base, and natural selection contributed more to the formation of codon usage bias in comparison to mutation pressure. Four genes (rbcL, ndhF, rps8, and ycf2) were detected to be subjected to positive selection. Phylogenetic analysis showed that the genus Uncaria was a monophyletic group, belonging to the tribe Naucleeae. Moreover, U. sinensis was not a variant of U. rhynchophylla. U. rhynchophylloides and U. rhynchophylla were not the same species. The results of the comparative and phylogenetic analysis provide valuable references for further research studies of classification, identification, breeding improvement, and phylogenetic relationships in Uncaria species.
Collapse
Affiliation(s)
- Jiangpeng Dai
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiaozhen Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xingyuan Xu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhijie Tan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuexia Lin
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuang Zhu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Pokharel S, Pandey GR, Shrestha A, Shrestha R, Tiwari D, Khanal BC, Silwal S. Molecular Identification and Antioxidant Activity Determination among Coffee Varieties Cultivated in Nepal. ScientificWorldJournal 2023; 2023:7744647. [PMID: 37964891 PMCID: PMC10643033 DOI: 10.1155/2023/7744647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Coffee is the most popular beverage containing numerous phytochemical components that have antioxidant activity capable of scavenging free radicals. Antioxidant and phenolic contents have considerable benefits for human health. The aim of this study was the molecular identification of 9 coffee samples from the Nepal Agricultural Research Council, Lalitpur, Nepal, and the determination of the antioxidant activity and total phenolic content of green and roasted coffee beans. Molecular identification was performed using ITS-specific PCR followed by sequencing and phylogenetic tree construction using the maximum parsimony method. The DPPH assay was used to determine the antioxidant activity, and the Folin-Ciocalteu (F-C) assay was used to determine the total phenolic content. All the samples belonged to the taxa Coffea arabica. The antioxidant activity in roasted beans varied from 2.49 to 4.62 AAE mg/g and from 1.4 to 3.9 AAE mg/g in green beans. The total phenolic content varied from 2.58 to 3.38 GAE mg/g and from 4.16 to 5.36 GAE mg/g for the roasted beans and green beans, respectively. The data revealed that the highest antioxidant content (4.62 AAE mg/g) was found in roasted coffee and that the highest phenolic content (5.36 GAE mg/g) was found in green coffee. The study concludes that roasting increases the antioxidant activity but decreases the phenolic content of coffee.
Collapse
Affiliation(s)
- Shreejan Pokharel
- National Biotechnology Research Center, Nepal Agricultural Research Council, Lalitpur 44700, Nepal
| | - Gyanu Raj Pandey
- Shubham Biotech Nepal Pvt. Ltd., Bharatpur-29, Chitwan 44200, Nepal
| | - Asmita Shrestha
- Shubham Biotech Nepal Pvt. Ltd., Bharatpur-29, Chitwan 44200, Nepal
| | | | - Dinesh Tiwari
- Shubham Biotech Nepal Pvt. Ltd., Bharatpur-29, Chitwan 44200, Nepal
| | - Bignya Chandra Khanal
- National Biotechnology Research Center, Nepal Agricultural Research Council, Lalitpur 44700, Nepal
| | - Sudip Silwal
- Shubham Biotech Nepal Pvt. Ltd., Bharatpur-29, Chitwan 44200, Nepal
| |
Collapse
|
6
|
Castro AA, Nunes R, Carvalho LR, Targueta CP, Dos Santos Braga-Ferreira R, de Melo-Ximenes AA, Corvalán LCJ, Bertoni BW, Pereira AMS, de Campos Telles MP. Chloroplast genome characterization of Uncaria guianensis and Uncaria tomentosa and evolutive dynamics of the Cinchonoideae subfamily. Sci Rep 2023; 13:8390. [PMID: 37225737 DOI: 10.1038/s41598-023-34334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Uncaria species are used in traditional medicine and are considered of high therapeutic value and economic importance. This work describes the assembly and annotation of the chloroplast genomes of U. guianensis and U. tomentosa, as well as a comparative analysis. The genomes were sequenced on MiSeq Illumina, assembled with NovoPlasty, and annotated using CHLOROBOX GeSeq. Addictionaly, comparative analysis were performed with six species from NCBI databases and primers were designed in Primer3 for hypervariable regions based on the consensus sequence of 16 species of the Rubiaceae family and validated on an in-silico PCR in OpenPrimeR. The genome size of U. guianensis and U. tomentosa was 155,505 bp and 156,390 bp, respectively. Both Species have 131 genes and GC content of 37.50%. The regions rpl32-ccsA, ycf1, and ndhF-ccsA showed the three highest values of nucleotide diversity within the species of the Rubiaceae family and within the Uncaria genus, these regions were trnH-psbA, psbM-trnY, and rps16-psbK. Our results indicates that the primer of the region ndhA had an amplification success for all species tested and can be promising for usage in the Rubiaceae family. The phylogenetic analysis recovered a congruent topology to APG IV. The gene content and the chloroplast genome structure of the analyzed species are conserved and most of the genes are under negative selection. We provide the cpDNA of Neotropical Uncaria species, an important genomic resource for evolutionary studies of the group.
Collapse
Affiliation(s)
- Andrezza Arantes Castro
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Rhewter Nunes
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil.
- Instituto Federal de Goiás - Campus Cidade de Goiás (IFG), Goiás, GO, 74600-000, Brazil.
| | - Larissa Resende Carvalho
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Cíntia Pelegrineti Targueta
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Ramilla Dos Santos Braga-Ferreira
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Amanda Alves de Melo-Ximenes
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Leonardo Carlos Jeronimo Corvalán
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | | | | | - Mariana Pires de Campos Telles
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
- Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás (PUC - GO), Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
7
|
Mursyidin DH, Setiawan A. Assessing diversity and phylogeny of Indonesian breadfruit (Artocarpus spp.) using internal transcribed spacer (ITS) region and leaf morphology. J Genet Eng Biotechnol 2023; 21:15. [PMID: 36757524 PMCID: PMC9911577 DOI: 10.1186/s43141-023-00476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Breadfruit (Artocarpus spp.) is the main genus of Moraceae with multipurpose benefits, both ecologically and economically important, e.g., food ingredients, building materials, traditional medicine, and natural insecticides. However, most endemic Artocarpus have been threatened due to natural disasters and habitat degradation. The objective of our study was to determine the genetic diversity and relationships of endemic Artocarpus from South Borneo, Indonesia, using an internal transcribed spacer (ITS) region and leaf morphology. RESULTS Morphologically, endemic Artocarpus endemic to South Borneo, Indonesia, has a different leaf shape, i.e., narrow-obovate to broad-elliptic, from simple to deeply dissected. Following the ITS region, this germplasm has a moderate level of nucleotide diversity (0.069). The phylogenetic analysis revealed Artocarpus into four (4) main clades, where the nearest is shown by the 'Puyian' (Artocarpus rigidus) and 'Binturung' (Artocarpus odoratissimus) at a coefficient divergence of 0.027, whereas the furthest by 'Kulur' (A. camansi) and 'Tiwadak' (A. integer) at a coefficient of 0.132. CONCLUSION In brief, although an endemic Artocarpus of South Borneo, Indonesia, has a moderate level of nucleotide diversity, this germplasm also shows a unique phylogenetic relationship. Thus, this information is urgent in supporting the future Artocarpus breeding and preservation programs, mainly to save this germplasm from being threatened.
Collapse
Affiliation(s)
- Dindin Hidayatul Mursyidin
- Laboratory of Genetics and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Lambung Mangkurat, Jl. A. Yani Km. 36, Banjarbaru, South Kalimantan, 70714, Indonesia.
| | - Akbar Setiawan
- grid.443126.60000 0001 2193 0299Laboratory of Genetics and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Lambung Mangkurat, Jl. A. Yani Km. 36, Banjarbaru, South Kalimantan 70714 Indonesia
| |
Collapse
|
8
|
Wu K, Liu Y, Yang B, Kung Y, Chang K, Lee M. Rapid discrimination of the native medicinal plant Adenostemma lavenia from its adulterants using PCR-RFLP. PeerJ 2022; 10:e13924. [PMID: 36340190 PMCID: PMC9635354 DOI: 10.7717/peerj.13924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background In Taiwan, the aerial part of Adenostemma lavenia (Al) is used in the form of herbal tea or in a folk remedy primarily to mitigate inflammatory conditions in the lungs and liver. Due to the excellent health benefits of Al against inflammation, it has become increasingly crucial and in great demand during the COVID-19 pandemic. However, Al has been found to be adulterated with Wedelia biflora, Sigesbeckia orientalis, and/or Wedelia chinensis because of similarities in appearance and vernacular names. Methods This study aimed to develop a PCR-RFLP DNA molecular method for the authentication of Al. The restriction enzyme BsrI was used according to the sequencing and alignment results of PCR products in the ITS2 regions of Al and its adulterants. Gel electrophoresis resulted in the clear separation of Al and its adulterants into two distinct categories. Results In conclusion, the PCR-RFLP authentication method developed herein provides an easy, rapid, and accurate method to distinguish Al from its adulterants to assure user health and safety.
Collapse
Affiliation(s)
- Kunchang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yunchen Liu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Bocheng Yang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yenying Kung
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Center of Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kaiwei Chang
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Center of Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mengshiou Lee
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Xu L, Zhang X, Guo H, Yang X, Xing Z, Yang W, Zhang J, Tian X. Species diversity analysis of commercial Mantidis Ootheca samples contaminated by store pests based on DNA metabarcoding. BMC Genomics 2022; 23:720. [PMID: 36271325 PMCID: PMC9587553 DOI: 10.1186/s12864-022-08955-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Mantidis Ootheca (Sangpiaoxiao, mantis egg case) is a typical multi-origin Chinese medicinal material. The Chinese Pharmacopoeia stipulates that the Mantidis Ootheca originates from three species of Mantis: Tenodera sinensis, Statilia maculate, and Hierodula patellifera. However, Mantidis Ootheca mainly relies on field collection, which leads to confusion of its actual origin in the market. As the clinical use of Mantidis Ootheca with unknown original mantis species will pose potential risks to drug safety, it is necessary to survey the commercially available Mantidis Ootheca origin species. However, as the egg case of Mantis, the morphological characters of Mantidis Ootheca are limited and usually cannot serve as accurate identification tool. DNA barcoding, which is widely used in taxonomic studies of animals, is severely affected by the impact of storage pests and DNA degradation. Thus, this study collected a total of 4580 Mantidis Ootheca and pooled separately Mantidis Ootheca samples according to 18 different sources as DNA samples to analyze the origin diversity of Mantidis Ootheca individuals contaminated by common store pests collected in in the market using DNA metabarcoding, and to provide a basis for quality control of Mantidis Ootheca. 37 Mantis ASVs and 9 Mantis MOTUs were identified through species delimitation, and the high-level intraspecific diversity was depicted as haplotype network plot. Besides Tenodera sinensis and Hierodula patellifera as genuine original mantis species defined in the Chinese Pharmacopoeia, Tenodera angustipennis was also the origin species of these Mantidis Ootheca samples.
Collapse
Affiliation(s)
- Liuwei Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaoying Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Hua Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xia Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Zhimei Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jian Zhang
- School of Chinese Materia, Tianjin Universtity of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaoxuan Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
10
|
Xing Z, Gao H, Wang D, Shang Y, Tuliebieke T, Jiang J, Li C, Wang H, Li Z, Jia L, Wu Y, Wang D, Yang W, Chang Y, Zhang X, Xu L, Jiang C, Huang L, Tian X. A novel biological sources consistency evaluation method reveals high level of biodiversity within wild natural medicine: A case study of Amynthas earthworms as “Guang Dilong”. Acta Pharm Sin B 2022; 13:1755-1770. [PMID: 37139429 PMCID: PMC10150161 DOI: 10.1016/j.apsb.2022.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
For wild natural medicine, unanticipated biodiversity as species or varieties with similar morphological characteristics and sympatric distribution may co-exist in a single batch of medical materials, which affects the efficacy and safety of clinical medication. DNA barcoding as an effective species identification tool is limited by its low sample throughput nature. In this study, combining DNA mini-barcode, DNA metabarcoding and species delimitation method, a novel biological sources consistency evaluation strategy was proposed, and high level of interspecific and intraspecific variations were observed and validated among 5376 Amynthas samples from 19 sampling points regarded as "Guang Dilong" and 25 batches of proprietary Chinese medicines. Besides Amynthas aspergillum as the authentic source, 8 other Molecular Operational Taxonomic Units (MOTUs) were elucidated. Significantly, even the subgroups within A. aspergillum revealed here differ significantly on chemical compositions and biological activity. Fortunately, this biodiversity could be controlled when the collection was limited to designated areas, as proved by 2796 "decoction pieces" samples. This batch biological identification method should be introduced as a novel concept regarding natural medicine quality control, and to offer guidelines for in-situ conservation and breeding bases construction of wild natural medicine.
Collapse
Affiliation(s)
- Zhimei Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ye Shang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Tenukeguli Tuliebieke
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jibao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxiao Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hong Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenguo Li
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Lifu Jia
- Guizhou Ruihe Pharmaceutical Co. Ltd., Guizhou 550000, China
| | - Yongsheng Wu
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Dandan Wang
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Liuwei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Chao Jiang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China
- Corresponding authors.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China
- Corresponding authors.
| | - Xiaoxuan Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Corresponding authors.
| |
Collapse
|
11
|
Zhu S, Liu Q, Qiu S, Dai J, Gao X. DNA barcoding: an efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chin Med 2022; 17:112. [PMID: 36171596 PMCID: PMC9514984 DOI: 10.1186/s13020-022-00655-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Chinese medicine (TCM) plays an important role in the global traditional health systems. However, adulterated and counterfeit TCM is on the rise. DNA barcoding is an effective, rapid, and accurate technique for identifying plant species. In this study, we collected manuscripts on DNA barcoding published in the last decade and summarized the use of this technique in identifying 50 common Chinese herbs listed in the Chinese pharmacopoeia. Based on the dataset of the major seven DNA barcodes of plants in the NCBI database, the strengths and limitations of the barcodes and their derivative barcoding technology, including single-locus barcode, multi-locus barcoding, super-barcoding, meta-barcoding, and mini-barcoding, were illustrated. In addition, the advances in DNA barcoding, particularly identifying plant species for TCM using machine learning technology, are also reviewed. Finally, the selection process of an ideal DNA barcoding technique for accurate identification of a given TCM plant species was also outlined.
Collapse
Affiliation(s)
- Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiaozhen Liu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Simin Qiu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangpeng Dai
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Ho VT, Tran TKP, Vu TTT, Widiarsih S. Comparison of matK and rbcL DNA barcodes for genetic classification of jewel orchid accessions in Vietnam. J Genet Eng Biotechnol 2021; 19:93. [PMID: 34152504 PMCID: PMC8217478 DOI: 10.1186/s43141-021-00188-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/01/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Jewel orchid is the common name of several orchid species which can be alike in morphological characteristics, but variable in medicinal properties. At present, two DNA barcode loci, namely, maturase K (matK) and ribulose 1,5-biphosphate carboxylase (rbcL), are intensively utilized for plant identification. However, the discrimination effectiveness of these loci is variable among plant species. This study was carried out to compare the identifying efficacy of these two loci on jewel orchid population collected throughout Vietnam. RESULTS The results revealed that 21 jewel orchid accessions studied were segregated into four different species with significant variations. The discrimination power of matK and rbcL markers in this jewel orchid study displayed different efficiency level. The rbcL gene has higher distinguishing potential than either matK gene alone or the combination of both genes. CONCLUSION The findings of this project could provide valuable information that is necessary for classification, plant origin identification, breeding, and conservation program of jewel orchid in Vietnam.
Collapse
Affiliation(s)
- Viet The Ho
- Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu District, Ho Chi Minh City, Vietnam.
| | - Thi Kim Phuong Tran
- Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu District, Ho Chi Minh City, Vietnam
| | - Thi Thanh Tram Vu
- Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu District, Ho Chi Minh City, Vietnam
| | - Sasanti Widiarsih
- Plant Mutation Breeding Division, Centre for Isotopes and Radiation Application, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, South Jakarta, Indonesia
| |
Collapse
|
13
|
Zhan H, Wei Z, Ren K, Tong S, Wang X, Wu Q. Pharmacokinetics of isocorynoxeine in rat plasma after intraperitoneal administration by UPLC–MS/MS. ACTA CHROMATOGR 2020. [DOI: 10.1556/1326.2019.00716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Isocorynoxeine is one of the main alkaloids in Chinese medicinal herbs, and has pharmacological activities such as antihypertensive, sedative, anticonvulsant, and neuronal protection. It is an effective component of Uncaria for the treatment of hypertension. In this study, we used a fast and sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) to detect isocorynoxeine in rat plasma and investigated its pharmacokinetics in rats. Six rats were given isocorynoxeine (15 mg/kg) by intraperitoneal (i.p.) administration. Blood (100 μL) was withdrawn from the caudal vein at 5 and 30 min and 1, 2, 4, 6, 8, 12, and 24 h after administration. Chromatographic separation was achieved using a UPLC BEH C18 column using a mobile phase of acetonitrile–0.1% formic acid with gradient elution. Electrospray ionization (ESI) tandem mass spectrometry in the multiple reaction monitoring (MRM) mode with positive ionization was applied. Intra-day and inter-day precisions (relative standard deviation, %RSD) of isocorynoxeine in rat plasma were lower than 12%. The method was successfully applied in the pharmacokinetics of isocorynoxeine in rats after intraperitoneal administration. The t1/2 of isocorynoxeine is 4.9 ± 2.1 h, which indicates quick elimination.
Collapse
Affiliation(s)
- Haichao Zhan
- 1 Department of Clinical Pharmacy, Jinhua Central Hospital, Jinhua 321000, China
| | - Zhen Wei
- 2 The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Ren
- 3 Department of Pharmacy, Ningbo YinZhou No.2 Hospital, Ningbo 315192, China
| | - Shuhua Tong
- 1 Department of Clinical Pharmacy, Jinhua Central Hospital, Jinhua 321000, China
| | - Xianqin Wang
- 4 Analytical and testing Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Wu
- 2 The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
14
|
Yepes-Pérez AF, Herrera-Calderon O, Sánchez-Aparicio JE, Tiessler-Sala L, Maréchal JD, Cardona-G W. Investigating Potential Inhibitory Effect of Uncaria tomentosa (Cat's Claw) against the Main Protease 3CL pro of SARS-CoV-2 by Molecular Modeling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:4932572. [PMID: 33029165 PMCID: PMC7532411 DOI: 10.1155/2020/4932572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2. Presently, there is no effective treatment for COVID-19. As part of the worldwide efforts to find efficient therapies and preventions, it has been reported the crystalline structure of the SARS-CoV-2 main protease Mpro (also called 3CLpro) bound to a synthetic inhibitor, which represents a major druggable target. The druggability of Mpro could be used for discovering drugs to treat COVID-19. A multilevel computational study was carried out to evaluate the potential antiviral properties of the components of the medicinal herb Uncaria tomentosa (Cat's claw), focusing on the inhibition of Mpro. The in silico approach starts with protein-ligand docking of 26 Cat's claw key components, followed by ligand pathway calculations, molecular dynamics simulations, and MM-GBSA calculation of the free energy of binding for the best docked candidates. The structural bioinformatics approaches led to identification of three bioactive compounds of Uncaria tomentosa (speciophylline, cadambine, and proanthocyanidin B2) with potential therapeutic effects by strong interaction with 3CLpro. Additionally, in silico drug-likeness indices for these components were calculated and showed good predicted therapeutic profiles of these phytochemicals. Our findings suggest the potential effectiveness of Cat's claw as complementary and/or alternative medicine for COVID-19 treatment.
Collapse
Affiliation(s)
- Andres F. Yepes-Pérez
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia-UdeA, Calle 70 No. 52-21, A.A 1226, Medellin, Colombia
| | - Oscar Herrera-Calderon
- Academic Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr Puno 1002, Lima 15001, Peru
| | - José-Emilio Sánchez-Aparicio
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Laura Tiessler-Sala
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Wilson Cardona-G
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia-UdeA, Calle 70 No. 52-21, A.A 1226, Medellin, Colombia
| |
Collapse
|
15
|
Prieto JAF, Rodríguez JMA, Sanna M, Cires E. Phylogeographical patterns of Campanula gr. arvatica, an endemic group of the Cantabrian mountains (NW Iberian Peninsula), based on plastid and nuclear DNA polymorphisms. SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1783715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- José Antonio Fernández Prieto
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Área de Botánica, C/Catedrático Rodrigo Uría s/n, Oviedo, 33071, Spain
- Instituto de Recursos Naturales y Ordenación del Territorio (INDUROT), Campus de Mieres, C/Gonzalo Gutiérrez Quirós s/n, Mieres, 33600, Spain
| | - Jose M. Arjona Rodríguez
- Field Crops Program, IRTA (Institute for Food and Agricultural Research and Technology), Rovira Roure, Lleida, 191, 25198, Spain
| | - Mauro Sanna
- Instituto de Recursos Naturales y Ordenación del Territorio (INDUROT), Campus de Mieres, C/Gonzalo Gutiérrez Quirós s/n, Mieres, 33600, Spain
| | - Eduardo Cires
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Área de Botánica, C/Catedrático Rodrigo Uría s/n, Oviedo, 33071, Spain
- Instituto de Recursos Naturales y Ordenación del Territorio (INDUROT), Campus de Mieres, C/Gonzalo Gutiérrez Quirós s/n, Mieres, 33600, Spain
- Instituto Universitario de Biotecnología de Asturias, Campus El Cristo, Edificio Santiago Gascón 2a planta, Oviedo, 33006, Spain
| |
Collapse
|
16
|
Srivastava D, Manjunath K. DNA barcoding of endemic and endangered orchids of India: A molecular method of species identification. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_574_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|