1
|
Susilawati E, Levita J, Susilawati Y, Sumiwi SA. Pharmacology activity, toxicity, and clinical trials of Erythrina genus plants (Fabaceae): an evidence-based review. Front Pharmacol 2023; 14:1281150. [PMID: 38044940 PMCID: PMC10690608 DOI: 10.3389/fphar.2023.1281150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
The concept of using plants to alleviate diseases is always challenging. In West Java, Indonesia, a local plant, named dadap serep has been traditionally used to reduce blood glucose, fever, and edema, by pounding the leaves and applying them on the inflamed skin, or boiled and consumed as herbal tea. This plant belongs to the Erythrina genus, which covers approximately 120 species. The scope of this review (1943-2023) is related to the Global Development Goals, in particular Goal 3: Good Health and Wellbeing, by focusing on the pharmacology activity, toxicity, and clinical trials of Erythrina genus plants and their metabolites, e.g., pterocarpans, alkaloids, and flavonoids. Articles were searched on PubMed and ScienceDirect databases, using "Erythrina" AND "pharmacology activity" keywords, and only original articles written in English and open access were included. In vitro and in vivo studies reveal promising results, particularly for antibacterial and anticancer activities. The toxicity and clinical studies of Erythrina genus plants are limitedly reported. Considering that extensive caution should be taken when prescribing botanical drugs for patients parallelly taking a narrow therapeutic window drug, it is confirmed that no interactions of the Erythrina genus were recorded, indicating the safety of the studied plants. We, therefore, concluded that Erythrina genus plants are promising to be further explored for their effects in various signaling pathways as future plant-based drug candidates.
Collapse
Affiliation(s)
- Elis Susilawati
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Faculty of Pharmacy, Bhakti Kencana University, Bandung, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Yasmiwar Susilawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
2
|
Li Y, Girgis M, Jayatilake M, Serebrenik AA, Cheema AK, Kaytor MD, Singh VK. Pharmacokinetic and metabolomic studies with a BIO 300 Oral Powder formulation in nonhuman primates. Sci Rep 2022; 12:13475. [PMID: 35931769 PMCID: PMC9356050 DOI: 10.1038/s41598-022-17807-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/01/2022] [Indexed: 01/08/2023] Open
Abstract
BIO 300, a pharmaceutical formulation of genistein, is being developed as a radiation countermeasure to treat hematopoietic acute radiation syndrome (H-ARS) and the delayed effects of acute radiation exposure (DEARE). Several studies have affirmed its safety and efficacy in alleviating the damaging effects of ionizing radiation. However, dose optimization of any drug has always been an important area of research because unnecessarily high drug doses may result in serious complications. In this study, we assessed the pharmacokinetics (PK) and metabolic profiles of two different doses of a novel solid-dosage formulation of BIO 300 (BIO 300 Oral Powder; 100 mg/kg and 200 mg/kg), when administered orally to nonhuman primates (NHPs). While the Tmax values of both doses remained the same, the area under the curve at 48 h (AUC0-48) was tripled by doubling the dose. Additionally, we monitored serum samples for global metabolomic/lipidomic changes using high resolution mass spectrometry followed by functional pathway analysis prior to and at various time points up to 48 h post drug administration. Interestingly, the metabolomic profiles of sera from NHPs that received the lower dose demonstrated a transient perturbation in numerous metabolites between the 4 and 12 h time points. Eventually, the metabolite abundance reverted to near-normal by 48 h. These study results are consistent with our previous studies focused on the PK and metabolomic analysis for parenteral and oral aqueous nanosuspension formulations of BIO 300. This study affirms that administration of a single dose of up to 200 mg/kg of BIO 300 Oral Powder is safe in NHPs and conferred no metabolomic-mediated safety features.
Collapse
Affiliation(s)
- Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael Girgis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | | | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
3
|
B Arcanjo R, Richardson KA, Yang S, Patel S, Flaws JA, Nowak RA. Effects of Chronic Dietary Exposure to Phytoestrogen Genistein on Uterine Morphology in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1693-1704. [PMID: 33528250 DOI: 10.1021/acs.jafc.0c07456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Genistein is naturally occurring in plants and binds to estrogen receptors. Humans are mainly exposed through diet, but the use of supplements is increasing as genistein is claimed to promote health and alleviate menopausal symptoms. We analyzed diverse uterine features in adult mice chronically fed genistein for different times. The luminal epithelium height was increased in females treated with 500 and 1000 ppm at PND 95, and the width of the outer myometrium was increased in females treated with 1000 ppm at PND 65 compared to that in controls. An increase in proliferation was noted in the inner myometrium layer of animals exposed to 300 ppm genistein at PND 185 compared to that in controls. Luminal hyperplasia was greater in the 1000 ppm group at PND 65, 95, and 185, although not statistically different from control. These results indicate that genistein may exert estrogenic activity in the uterus, without persistent harm to the organ.
Collapse
Affiliation(s)
- Rachel B Arcanjo
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Kadeem A Richardson
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Shuhong Yang
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Shreya Patel
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61820, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61820, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Brás NF, Neves RPP, Lopes FAA, Correia MAS, Palma AS, Sousa SF, Ramos MJ. Combined in silico and in vitro studies to identify novel antidiabetic flavonoids targeting glycogen phosphorylase. Bioorg Chem 2020; 108:104552. [PMID: 33357981 DOI: 10.1016/j.bioorg.2020.104552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023]
Abstract
Novel pharmacological strategies for the treatment of diabetic patients are now focusing on inhibiting glycogenolysis steps. In this regard, glycogen phosphorylase (GP) is a validated target for the discovery of innovative antihyperglycemic molecules. Natural products, and in particular flavonoids, have been reported as potent inhibitors of GP at the cellular level. Herein, free-energy calculations and microscale thermophoresis approaches were performed to get an in-depth assessment of the binding affinities and elucidate intermolecular interactions of several flavonoids at the inhibitor site of GP. To our knowledge, this is the first study indicating genistein, 8-prenylgenistein, apigenin, 8-prenylapigenin, 8-prenylnaringenin, galangin and valoneic acid dilactone as natural molecules with high inhibitory potency toward GP. We identified: i) the residues Phe285, Tyr613, Glu382 and/or Arg770 as the most relevant for the binding of the best flavonoids to the inhibitor site of GP, and ii) the 5-OH, 7-OH, 8-prenyl substitutions in ring A and the 4'-OH insertion in ring B to favor flavonoid binding at this site. Our results are invaluable to plan further structural modifications through organic synthesis approaches and develop more effective pharmaceuticals for Type 2 Diabetes treatment, and serve as the starting point for the exploration of food products for therapeutic usage, as well as for the development of novel bio-functional food and dietary supplements/herbal medicines.
Collapse
Affiliation(s)
- Natércia F Brás
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Rui P P Neves
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Filipa A A Lopes
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia-Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Márcia A S Correia
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia-Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Angelina S Palma
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia-Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sérgio F Sousa
- UCIBIO-REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Maria J Ramos
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|