1
|
Ahmad Bhat N, Gani A, Gani A. Identification, quantification and nutraceutical evaluation of the extracts from Arnebia benthamii roots of Himalayan regions of J&K, India. ULTRASONICS SONOCHEMISTRY 2024; 109:106985. [PMID: 39047460 PMCID: PMC11321380 DOI: 10.1016/j.ultsonch.2024.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Arnebia benthamii is one of the important sources of biologically active naphthoquinone pigments. The present study aimed at extraction of shikonin from Arnebia benthamii roots and its characterization. In order to identify and quantify shikonin, the extracts were evaluated using HPLC, LCMS, GCMS, NP-HPTLC and FTIR. Furthermore, nutraceutical evaluation was also done. It was found that the amount of shikonin was very low in the extracts obtained by using aqueous ethanol as it was not detected through chromatographic techniques. However, when hexane was used for extraction, a significant amount of shikonin (4.55 mg/g) was detected. The shikonin showed a linear range from 2-55 µg/mL with LOD and LOQ of 2.65 and 8.02 respectively, with a retention time of 3.64 min. The results of FTIR revealed that hexane extract had the intensity of functional groups similar to that of the standard. The values of DPPH radical inhibition were observed as 82.98 ± 0.01, 65.09 ± 0.23 %, 62.28 ± 0.86 % and 54.09 ± 0.23 % for Std, Ehex, Eus and Evs, respectively. The hexane extract showed the highest antioxidant activity as compared to other samples. Moreover, the hexane extracted shikonin displayed significantly (p > 0.05) high α-amylase and pancreatic lipase inhibition, indicating its high anti-diabetic and anti-lipidemic potential. It can be concluded that hexane is the best solvent for the extraction of shikonin and has better nutraceutical potential compared to ethanolic extracts.
Collapse
Affiliation(s)
- Naseer Ahmad Bhat
- Department of Food Science & Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Department of Food Science & Technology, University of Kashmir, Srinagar 190006, India.
| | - Asir Gani
- Department of Food Science & Technology, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
2
|
Liu J, Zhang W, Jin S, Zhang H, Xu Y, Xiong P, Qin X, Jia B. Plant-derived inducers in tumor differentiation therapy:A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155749. [PMID: 38763009 DOI: 10.1016/j.phymed.2024.155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Differentiation therapy, a highly regarded treatment method in tumor research, aims to induce tumor cells to differentiate back to normal cells, deviating from the malignant pathway and returning to a benign state. Its development relies on the continuous discovery of efficient and low-toxic differentiation inducers, including plant-derived active components that offer significant biological utilization and therapeutic potential. For this reason, the exploration of plant-derived inducers, particularly in their application in differentiation therapy, holds great promise in advancing cancer treatment strategies toward more effective and safer alternatives. PURPOSE This paper aims to provide a valuable reference for researchers seeking to identify natural, efficient, and low-toxic differentiation inducers from plants and highlights a promising research direction for the application of differentiation therapy in malignant tumor treatment. METHODS For the collection of pertinent information, an extensive search was conducted across diverse literature and electronic databases, including PubMed, ScienceDirect, Wiley, ACS, CNKI, Springer, Taylor & Francis, Web of Science, Google Scholar, and Baidu Scholar. This comprehensive approach aimed to retrieve and include all relevant literature from 1985 to 2023. Primary keywords such as "Natural medicinal plant," "Differentiation therapy," and "Differentiation inducer" were utilized, supplemented by secondary search terms including "Cancer," "Tumor," "Herbal medicine," "Induced differentiation," and "Cancer treatment." RESULTS This study systematically evaluated the application of plant-derived inducers in tumor-induced differentiation therapy. Through extensive literature review, specific plant components with confirmed differentiation-inducing properties were identified. Furthermore, potential molecular mechanisms underlying this process were outlined, shedding light on the future development of differentiation therapy in cancer treatment. CONCLUSION Plant-derived active components exhibit substantial biological utility and therapeutic potential. Delving deeper into the research on these components as differentiation inducers holds promise for the selection of novel cancer drugs and the unveiling of novel pathways for cancer treatment. These results emphasize the importance of continued exploration and in-depth research into natural, efficient, and low-toxic differentiation inducers from plants, which could significantly advance cancer treatment strategies. Moreover, the highlighted research direction underscores the relevance of differentiation therapy in the context of malignant tumor treatment, indicating its potential as a safer and more effective alternative in cancer therapy.
Collapse
Affiliation(s)
- Junyu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Shenrui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hua Zhang
- Nanbu Hospital of County Chinese Medicine, Nanchong, Sichuan, 637399, China
| | - Yi Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Peiyu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
3
|
Yang L, Wang C, Lai X, Jin S, Wang X, Wen Z, Yang M, Fazal A, Ding Y, Li Z, Cai J, Lu G, Lin H, Han H, Yang Y, Qi J. In vivo transgenic studies confirm the critical acylation function of LeBAHD56 for shikonin in Lithospermum erythrorhizon. PLANT CELL REPORTS 2024; 43:160. [PMID: 38825616 DOI: 10.1007/s00299-024-03242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
KEY MESSAGE LeBAHD56 is preferentially expressed in tissues where shikonin and its derivatives are biosynthesized, and it confers shikonin acylation in vivo. Two WRKY transcriptional factors might regulate LeBAHD56's expression. Shikonin and its derivatives, found in the roots of Lithospermum erythrorhizon, have extensive application in the field of medicine, cosmetics, and other industries. Prior research has demonstrated that LeBAHD1(LeSAT1) is responsible for the biochemical process of shikonin acylation both in vitro and in vivo. However, with the exception of its documented in vitro biochemical function, there is no in vivo genetic evidence supporting the acylation function of the highly homologous gene of LeSAT1, LeBAHD56(LeSAT2), apart from its reported role. Here, we validated the critical acylation function of LeBAHD56 for shikonin using overexpression (OE) and CRISPR/Cas9-based knockout (KO) strategies. The results showed that the OE lines had a significantly higher ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than the control. In contrast, the KO lines had a significantly lower ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than controls. As for its detailed expression patterns, we found that LeBAHD56 is preferentially expressed in roots and callus cells, which are the biosynthesis sites for shikonin and its derivatives. In addition, we anticipated that a wide range of putative transcription factors might control its transcription and verified the direct binding of two crucial WRKY members to the LeBAHD56 promoter's W-box. Our results not only confirmed the in vivo function of LeBAHD56 in shikonin acylation, but also shed light on its transcriptional regulation.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohui Lai
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- School of Biology and Geography Science, Yili Normal University, Yining, 835000, China
| | - Suo Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuhang Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongyi Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Darole RS, Choudhary SS, Sharma H, Mali BP, Gopu B, Vanka K, Senthilkumar B. Brønsted acid- and Ni(II)-catalyzed C-H oxidation/rearrangement of cyclotriveratrylenes (CTVs) to cyclic and acyclic quinones as potential anti-cancer agents. Org Biomol Chem 2024; 22:1038-1046. [PMID: 38197499 DOI: 10.1039/d3ob01428b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This paper describes a simple and practical protocol for the direct synthesis of acyclic and cyclic quinone derivatives via an acid-promoted nickel(II)-catalyzed inner rim C-H oxidation of cyclotriveratrylene (CTV) and its analogues. The cyclic quinone derivatives resulted from trimethoxy-cyclotriveratrylene (TCTV) through C-C bond formation via intramolecular ipso substitution followed by subsequent anionic rearrangement containing stereo-vicinal quaternary centers. The DFT calculations strongly support the experimental findings and reveal the role of Brønsted acids in the C-H bond activation of CTV. All the newly synthesized compounds were screened for their in vitro anti-cancer activity using colorimetric SRB assay analysis. Among them, compounds 3a, 3d, 3h, 4a, 4b, 4c and 4e exhibited moderate anticancer activity against A549, HCT-116, PC-3, MDA-MB-231, HEK-293 and SW620 human cancer cell lines.
Collapse
Affiliation(s)
- Ratanamala S Darole
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Shailendra Singh Choudhary
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Himanshu Sharma
- Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Bhupendra P Mali
- Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Booblan Gopu
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-18000, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Kumar Vanka
- Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Beeran Senthilkumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
5
|
Zhang ZP, Liu Y, Zou HD, Pan J, Hao ZC, Guan W, Algradi AM, Kuang HX, Yang BY. Euchronin A-F isolated from the Arnebia euchroma (Royle) Johnst. and their anti-proliferative activities in vitro. J Nat Med 2024; 78:33-41. [PMID: 37658159 DOI: 10.1007/s11418-023-01738-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/09/2023] [Indexed: 09/03/2023]
Abstract
Six new naphthoquinones, euchronin A-F (1-6) and nine known naphthoquinones (7-15), were isolated from the roots of Arnebia euchroma (Royle) Johnst. The structures of the new compounds were confirmed by extensive spectroscopic analyses, including UV, IR, HR-ESI-MS, 1D and 2D NMR. In the present study, we estimated the anti-proliferative activities of these compounds with HaCaT cells. The results indicated that compounds 2 and 4 showed strong anti-proliferative activities at 25 μM, with relative viability at 38.83% and 68.44%, respectively.
Collapse
Affiliation(s)
- Zhen-Peng Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Hai-Dan Zou
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Zhi-Chao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Adnan Mohammed Algradi
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People's Republic of China.
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People's Republic of China.
| |
Collapse
|
6
|
Yuan Y, Liu S, Yang H, Xu J, Zhai J, Jiang H, Sun B. Acetylshikonin induces apoptosis through the endoplasmic reticulum stress-activated PERK/eIF 2α /CHOP axis in oesophageal squamous cell carcinoma. J Cell Mol Med 2024; 28:e18030. [PMID: 37929884 PMCID: PMC10807581 DOI: 10.1111/jcmm.18030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Acetylshikonin (AS) is an active component of Lithospermum erythrorhizon Sieb. et Zucc that exhibits activity against various cancers; however, the underlying mechanisms of AS against oesophageal squamous carcinoma (ESCC) need to be elusive. The research explores the anti-cancer role and potential mechanism of AS on ESCC in vitro and in vivo, providing evidences for AS treatment against ESCC. In this study, we firstly demonstrated that AS treatment effectively inhibits cell viability and proliferation of ESCC cells. In addition, AS significantly induces G1/S phage arrest and promotes apoptosis in ESCC cell lines. Further studies reveal that AS induces ER stress, as observed by dose- and time-dependently increased expression of BIP, PDI, PERK, phosphorylation of eIF2α , CHOP and splicing of XBP1. CHOP knockdown or PERK inhibition markedly rescue cell apoptosis induced by AS. Moreover, AS treatment significantly inhibits ESCC xenograft growth in nude mice. Elevated expression of BIP and CHOP is also observed in xenograft tumours. Taken together, AS inhibits proliferation and induces apoptosis through ER stress-activated PERK/eIF2α /CHOP pathway in ESCC, which indicates AS represents a promising candidate for ESCC treatment.
Collapse
Affiliation(s)
- Ya‐Jiao Yuan
- Department of Biochemistry and Molecular Biology, College of Clinical and Basic MedicineShandong First Medical University & Shandong academy of medical sciencesJinanChina
- Department of Clinical LaboratoryQingdao Jimo People's HospitalQingdaoChina
| | - Shanshan Liu
- Department of Biochemistry and Molecular Biology, College of Clinical and Basic MedicineShandong First Medical University & Shandong academy of medical sciencesJinanChina
| | - Hong Yang
- Department of Clinical LaboratoryTaian Central HospitalChina
| | - Jian‐Ling Xu
- Department of Biochemistry and Molecular Biology, College of Clinical and Basic MedicineShandong First Medical University & Shandong academy of medical sciencesJinanChina
| | - Jing Zhai
- Department of Biochemistry and Molecular Biology, College of Clinical and Basic MedicineShandong First Medical University & Shandong academy of medical sciencesJinanChina
| | - Han‐Ming Jiang
- Department of Biochemistry and Molecular Biology, College of Clinical and Basic MedicineShandong First Medical University & Shandong academy of medical sciencesJinanChina
| | - Beibei Sun
- Department of Biochemistry and Molecular Biology, College of Clinical and Basic MedicineShandong First Medical University & Shandong academy of medical sciencesJinanChina
| |
Collapse
|
7
|
Hu S, Li Y, Zhou J, Xu K, Pang Y, Weiskirchen R, Ocker M, Ouyang F. Identification of acetylshikonin as a novel tubulin polymerization inhibitor with antitumor activity in human hepatocellular carcinoma cells. J Gastrointest Oncol 2023; 14:2574-2586. [PMID: 38196542 PMCID: PMC10772698 DOI: 10.21037/jgo-23-842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Background Microtubules are attractive targets for anticancer drugs. However, the microtubule-targeting agents (MTAs) currently in clinical use exhibit inevitable drug resistance. Therefore, there is an urgent need to discover novel MTAs for the clinical treatment of cancer. Methods Bioactive compounds extracted from Lithospermum erythrorhizon were assessed for in vitro anti-proliferative activities against a panel of human cancer cell lines using cell counting kit-8 (CCK-8) assay. Tubulin polymerization inhibition assay, colchicine competitive binding site assay, and immunofluorescence were used to validate the tubulin inhibition effect of acetylshikonin. Flow cytometry, Hoechst staining, and caspase-3 activity evaluation were performed to assess cell cycle arrest and cell apoptosis. 5,5',6,6'-tetrachloro-1,1',3,3'-tetramethylbenzimidazolylcarbocyanine iodide (JC-1) staining and dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining were used to evaluate mitochondrial membrane potential (MMP) and reactive oxygen species (ROS), respectively. Results Acetylshikonin exhibited potent anti-proliferative activities against a panel of human cancer cell lines (IC50 values: 1.09-7.26 µM) and displayed comparable cytotoxicity against several drug-resistant cell lines. Further mechanism studies revealed that acetylshikonin induced cell cycle arrest of MHCC-97H cells at G2/M phase, and significantly promoted apoptosis marked by a collapse of MMP and abnormal ROS accumulation. Conclusions In this study, acetylshikonin was identified as MTA against hepatocellular carcinoma and can serve as a promising lead compound for further development of anti-cancer drug, underscoring its potential clinical significance.
Collapse
Affiliation(s)
- Siming Hu
- Department of Laboratory Medicine, Nanfang Hospital Taihe Branch, Guangzhou, China
| | - Yongchuan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junqiu Zhou
- Department of Laboratory Medicine, Nanfang Hospital Baiyun Branch, Southern Medical University, Guangzhou, China
| | - Kun Xu
- Department of Laboratory Medicine, Nanfang Hospital Baiyun Branch, Southern Medical University, Guangzhou, China
| | - Yanqing Pang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Matthias Ocker
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology Campus Charité Mitte, Charité University Medicine Berlin, Berlin, Germany
| | - Fen Ouyang
- Department of Laboratory Medicine, Nanfang Hospital Baiyun Branch, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Song Y, Ding Q, Hao Y, Cui B, Ding C, Gao F. Pharmacological Effects of Shikonin and Its Potential in Skin Repair: A Review. Molecules 2023; 28:7950. [PMID: 38138440 PMCID: PMC10745356 DOI: 10.3390/molecules28247950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, skin injuries have a serious impact on people's lives and socio-economic stress. Shikonin, a naphthoquinone compound derived from the root of the traditional Chinese medicine Shikonin, has favorable biological activities such as anti-inflammatory, antibacterial, immunomodulatory, anticancer, and wound-healing-promoting pharmacological activities. It has been reported that Shikonin can be used for repairing skin diseases due to its wide range of pharmacological effects. Moreover, the antimicrobial activity of Shikonin can play a great role in food and can also reduce the number of pathogenic bacteria in food. This paper summarizes the research on the pharmacological effects of Shikonin in recent years, as well as research on the mechanism of action of Shikonin in the treatment of certain skin diseases, to provide certain theoretical references for the clinical application of Shikonin, and also to provides research ideas for the investigation of the mechanism of action of Shikonin in other skin diseases.
Collapse
Affiliation(s)
- Yanping Song
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China;
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China;
| | - Yuewen Hao
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China; (Y.H.); (B.C.)
| | - Bing Cui
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China; (Y.H.); (B.C.)
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China;
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Dunhua 133700, China
| | - Feng Gao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China;
| |
Collapse
|
9
|
Gomes de Carvalho NK, Wellisson da Silva Mendes J, Martins da Costa JG. Quinones: Biosynthesis, Characterization of 13 C Spectroscopical Data and Pharmacological Activities. Chem Biodivers 2023; 20:e202301365. [PMID: 37926679 DOI: 10.1002/cbdv.202301365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/07/2023]
Abstract
Quinones are natural products widely distributed in nature, which are involved in stages of several vital biological processes, with mostly having a variety of pharmacological properties. The main groups comprising most of these compounds are benzoquinones, naphthoquinones, anthraquinones, and phenanthraquinones. Quinone isolation has been a focus of study around the world in recent years; for this reason, this study approaches the junction of natural quinones identified by 13 C Nuclear Magnetic Resonance (NMR) spectroscopic analytical techniques. The methodology used to obtain the data collected articles from various databases on quinones from 2000 to 2022. As a result, 137 compounds were selected, among which 70 were characterized for the first time in the period investigated; moreover, the study also discusses the biosynthetic pathways of quinones and the pharmacological activities of the compounds found, giving an overview of the various applications of these compounds.
Collapse
Affiliation(s)
- Natália Kelly Gomes de Carvalho
- Rede Nordeste de Biotecnologia - RENORBIO, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700 - Campus do Itaperi, 60714-903, Fortaleza, Ceará, Brasil
| | - Johnatan Wellisson da Silva Mendes
- Departamento de Química Biológica, Laboratório de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, Rua Coronel Antônio Luíz, 1161 - Pimenta, 63105-010, Crato, Ceará, Brasil
| | - José Galberto Martins da Costa
- Rede Nordeste de Biotecnologia - RENORBIO, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700 - Campus do Itaperi, 60714-903, Fortaleza, Ceará, Brasil
| |
Collapse
|
10
|
Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation. Biomed Pharmacother 2023; 161:114474. [PMID: 36878051 DOI: 10.1016/j.biopha.2023.114474] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly characterized by progressive cognitive dysfunction and memory impairment. Recent studies have shown that regulating silent information regulator 1 (SIRT1) expression has a significant neuroprotective effect, and SIRT1 may become a new therapeutic target for AD. Natural molecules are an important source of drug development for use in AD therapy and may regulate a wide range of biological events by regulating SIRT1 as well as other SIRT1-mediated signaling pathways. This review aims to summarize the correlation between SIRT1 and AD and to identify in vivo and in vitro studies investigating the anti-AD properties of natural molecules as modulators of SIRT1 and SIRT1-mediated signaling pathways. A literature search was conducted for studies published between January 2000 and October 2022 using various literature databases, including Web of Science, PubMed, Google Scholar, Science Direct, and EMBASE. Natural molecules, such as resveratrol, quercetin, icariin, bisdemethoxycurcumin, dihydromyricetin, salidroside, patchouli, sesamin, rhein, ligustilide, tetramethoxyflavanone, 1-theanine, schisandrin, curcumin, betaine, pterostilbene, ampelopsin, schisanhenol, and eriodictyol, have the potential to modulate SIRT1 and SIRT1 signaling pathways, thereby combating AD. The natural molecules modulating SIRT1 discussed in this review provide a potentially novel multi-mechanistic therapeutic strategy for AD. However, future clinical trials need to be conducted to further investigate their beneficial properties and to determine the safety and efficacy of SIRT1 natural activators against AD.
Collapse
|
11
|
Xu J, Wu G, Yu X, Dong Z, Yan J, Wu L, Bao L, Liu Q. Exploring the mechanism of MP gel against skin photoaging based on network pharmacology, molecular docking, and experimental validation. J Cosmet Dermatol 2023; 22:1108-1123. [PMID: 36465034 DOI: 10.1111/jocd.15542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Long-term and high exposure to UV radiation can lead to the development of skin photoaging diseases. Therefore, there is an ongoing need for more natural and safe drugs to prevent or treat skin photoaging diseases. METHODS The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database were used to collect the active compounds and corresponding targets of Cnidii Fructus, Arnebiae Radix, Angelicae Sinensis Radix, Poria, and Borneolum. The GeneCards database and the NCBI Gene database were used to collect the targets of skin photoaging diseases. The STRING database was used to construct a protein-protein interaction network formed by the intersecting targets of drugs and diseases. The Metascape database was applied for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the targets. Molecular docking between active compounds and targets was verified by Autodock. After that, the skin photoaging model of mice was established and treated with MP gel. The skin characterization on the back of mice was observed, and the ameliorative effect of MP gel on skin photoaging was evaluated by histological and epidermal thickness assays. The MDA content and SOD activity were measured. Caspase-3 expression in mouse skin tissues was detected by immunohistochemistry, quantitative real-time polymerase chain reaction assay, and Western blot. RESULTS The results of network pharmacology experiments showed that the natural drugs have multi-component, multi-target therapeutic disease characteristics. The results of animal studies showed that MP gel improved the health of photoaged skin, promoted skin structural integrity, had antioxidant properties and significantly inhibited caspase-3 expression. CONCLUSION The experimental validation of the results of the preliminary network pharmacology analysis was carried out in animal experiments, which confirmed part of the mechanism of action of MP gel in the prevention and treatment of skin photoaging.
Collapse
Affiliation(s)
- Jinfan Xu
- Department of Pharmacology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Guodong Wu
- Department of Pharmacology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xianglin Yu
- Department of Pharmacology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jibiao Yan
- Inner Mongolia Puze Biological Products Co., Ltd., Hohhot, Inner Mongolia, China
| | - Lan Wu
- Mongolia Medical School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lidao Bao
- Hohhot Mongolian Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| | - Quanli Liu
- Department of Pharmacology, Baotou Medical College, Baotou, Inner Mongolia, China.,Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
12
|
Kan S, Tan J, Cai Q, An L, Gao Z, Yang H, Liu S, Na R, Yang L. Synergistic activity of the combination of falcarindiol and itraconazole in vitro against dermatophytes. Front Cell Infect Microbiol 2023; 13:1128000. [PMID: 37207188 PMCID: PMC10189107 DOI: 10.3389/fcimb.2023.1128000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Previous studies have shown that natural polyacetylene alcohols, such as falcarindiol (FADOH), have good antifungal effects on plant fungi. While its effect on fungi that infect humans remains to be explored. In our study, checkerboard microdilution, drop-plate assay, and time-growth method were employed to analyze the interactions between FADOH and itraconazole (ITC) in vitro against dermatophytes, including 12 Trichophyton rubrum (T. rubrum), 12 Trichophyton mentagrophytes (T. mentagrophytes), and 6 Microsporum canis (M. canis). The results showed that the combination of FADOH and ITC exhibited synergistic and additive activity against 86.7% of all tested dermatophytes. FADOH had an excellent synergistic effect on ITC against T. rubrum and T. mentagrophytes; the synergistic rates were 66.7% and 58.3%, respectively. On the contrary, FADOH combined with ITC showed poor synergistic inhibitory activity (16.7%) against M. canis. Moreover, the additive rates of these two drugs against T. rubrum, T. mentagrophytes, and M. canis were 25%, 41.7%, and 33.3%, respectively. No antagonistic interactions were observed. The drop-plate assay and time-growth curves confirmed that the combination of FADOH and ITC had a potent synergistic antifungal effect. The in vitro synergistic effect of FADOH and ITC against dermatophytes is reported here for the first time. Our findings suggest the potential use of FADOH as an effective antifungal drug in the combined therapy of dermatophytoses caused especially by T. rubrum and T. mentagrophytes.
Collapse
Affiliation(s)
- Siyue Kan
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingwen Tan
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Cai
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lulu An
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiqin Gao
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Yang
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siyu Liu
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Risong Na
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lianjuan Yang
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Lianjuan Yang,
| |
Collapse
|
13
|
Abadan S, Saglam MF, Koca MS, Bingul M, Sahin H, Zorlu Y, Sengul IF. Synthesis and Molecular Modeling Studies of Naphthazarin Derivatives as Novel Selective Inhibitors of α-Glucosidase and α-Amylase. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Recent advances in anti-coxsackievirus A16 viral drug research. Future Med Chem 2023; 15:97-117. [PMID: 36538291 DOI: 10.4155/fmc-2022-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hand, foot and mouth disease, a childhood disorder caused by enteroviruses, is intermittently endemic in the Asia-Pacific region and endangers the lives of many infants and young children. Coxsackievirus A16 (CV-A16) is one of the major pathogens causing hand, foot, and mouth disease on occasion, resulting in catastrophic neurological sequelae and patient death. Currently, no clinical interventions are available that completely block the CV-A16 infection. Therefore, research on anti-CV-A16 treatment continues to be a significant focus of interest. This report provides a detailed background on and an introduction to CV-A16; a description of the viral gene and protein structures and a summary of the current advances in pharmaceutical targets, drug research and other related areas.
Collapse
|
15
|
Yu J, Li P, Duan Z, Liu X. Effect of Qiling Jiaogulan Powder on Pulmonary Fibrosis and Pulmonary Arteriole Remodeling in Low-Temperature-Exposed Broilers. Animals (Basel) 2022; 13:ani13010005. [PMID: 36611616 PMCID: PMC9817788 DOI: 10.3390/ani13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Chinese herbal medicine plays an important role in regulating the nutritional metabolism of poultry and maintaining or improving normal physiological functions and animal health. The present study investigated the effects of dietary supplementation with Qiling Jiaogulan Powder (QLJP) on pulmonary fibrosis and pulmonary arteriole remodeling in low temperature-exposed broilers. Seven-day-old Ross 308 broilers (n = 240) were reared adaptively to 14 days of age. The broilers were randomly divided into six groups: A control group (basal diet and normal feeding temperature); model group (basal diet); low-, medium- and high-dose QLJP groups (basal diet supplemented with 1 g/kg, 2 g/kg, 4 g/kg QLJP); and L-Arg group (basal diet supplemented with 10 g/kg L-arginine). Additionally, all the broilers, except the broilers in the control group, from the age of 14 days old, had a house temperature continuously lowered by 2 °C each day until it reached 12 °C at 21 days of age, and the low temperature was maintained until the end of the experiment. There were four replicates per group and 10 birds per replicate. The results showed that the structure of the lung tissue was clearer and basically intact in the broilers in the QLJP groups, with a small number of collagen fibers formed, and the content of hydroxyproline (HYP) was significantly reduced. QLJP improved pulmonary arteriole lesions, such as tunica media thickening, intimal hyperplasia, arterial wall hypertrophy, and lumen narrowing. QLJP reduced the relative media thickness (%) and relative medial area (%) of the pulmonary arteriole, and significantly decreased the expression level of the alpha-smooth muscle actin (α-SMA) protein in pulmonary arteriole, which alleviated pulmonary arteriole remodeling. The quantitative real-time PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) results showed that QLJP treatment significantly reduced the gene and protein levels of transforming growth factor-beta l (TGF-β1) and Smad2 in the lung and downregulated the gene and protein levels of collagen type I alpha 1 (COL1A1) and matrix metalloproteinase 2 (MMP2). In conclusion, the results of our study suggested that dietary supplementation with QLJP improved pulmonary fibrosis and pulmonary arteriole remodeling by inhibiting the expression of genes related to the TGF-β1/Smad2 signaling pathway and inhibited the occurrence and development of pulmonary arterial hypertension in low-temperature-exposed broilers.
Collapse
Affiliation(s)
- Juan Yu
- School of Life Sciences and Basic Medicine, Xinxiang University, Xinxiang 453003, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030800, China
| | - Peng Li
- School of Life Sciences and Basic Medicine, Xinxiang University, Xinxiang 453003, China
| | - Zhibian Duan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030800, China
| | - Xingyou Liu
- School of Life Sciences and Basic Medicine, Xinxiang University, Xinxiang 453003, China
- Correspondence:
| |
Collapse
|
16
|
Cha HS, Lee HK, Park SH, Nam MJ. Acetylshikonin induces apoptosis of human osteosarcoma U2OS cells by triggering ROS-dependent multiple signal pathways. Toxicol In Vitro 2022; 86:105521. [DOI: 10.1016/j.tiv.2022.105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
|
17
|
Lu N, Gu T, Tian X, Zhao S, Jin G, Mangaladoss F, Qiao Y, Liu K, Zhao R, Dong Z. Acetylshikonin inhibits inflammatory responses and Papain-like protease activity in murine model of COVID-19. Signal Transduct Target Ther 2022; 7:371. [PMID: 36302747 DOI: 10.1038/s41392-022-01220-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ning Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Xueli Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China.,Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China.,The Henan Luoyang Orthopedic Hospital, Zhengzhou, Henan, P.R. China
| | - Fredimoses Mangaladoss
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China. .,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China.
| |
Collapse
|
18
|
Lohberger B, Glänzer D, Kaltenegger H, Eck N, Leithner A, Bauer R, Kretschmer N, Steinecker-Frohnwieser B. Shikonin derivatives cause apoptosis and cell cycle arrest in human chondrosarcoma cells via death receptors and MAPK regulation. BMC Cancer 2022; 22:758. [PMID: 35820864 PMCID: PMC9275282 DOI: 10.1186/s12885-022-09857-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Although chondrosarcoma is the second most common primary malignant bone tumor, treatment options are limited due to its extensive resistance to a chemo- and radiation therapy. Since shikonin has shown potent anticancer activity in various types of cancer cells, it represents a promising compound for the development of a new therapeutic approach. Methods The dose-relationships of shikonin and its derivatives acetylshikonin and cyclopropylshikonin on two human chondrosarcoma cell lines were measured using the CellTiter-Glo®. The changes in the cell cycle were presented by flow cytometry. Protein phosphorylation and expression apoptotic markers, MAPKs and their downstream targets were analyzed using western blotting and gene expression were evaluated using RT-qPCR. Results Chondrosarcoma cells showed a dose-dependent inhibition of cell viability after treatment with shikonin and its derivatives, with the strongest effect for shikonin and IC50 values of 1.3 ± 0.2 µM. Flow cytometric measurements revealed a G2/M arrest of the cells after treatment. Protein and gene expression analysis demonstrated a dose-dependent downregulation of survivin and XIAP, and an upregulation of Noxa, γH2AX, cleaved caspase-8, -9, -3, and -PARP. Furthermore, the expression of various death receptors was modulated. As MAPK signaling pathways play a key role in tumor biology, their phosphorylation pattern and their corresponding downstream gene regulation were analyzed. Treatment with shikonin derivatives caused an inhibition of pSTAT3 and an increase of pAKT and the MAPKs pERK, pJNK, and pp38 in a dose-dependent manner. Conclusions These data demonstrated the significant anti-tumorigenic effect of shikonin derivatives in chondrosarcoma and encourage further research. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09857-x.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria. .,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria.
| | - Dietmar Glänzer
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria
| | - Heike Kaltenegger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
| | - Nadine Kretschmer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
| | | |
Collapse
|
19
|
Yadav S, Sharma A, Nayik GA, Cooper R, Bhardwaj G, Sohal HS, Mutreja V, Kaur R, Areche FO, AlOudat M, Shaikh AM, Kovács B, Mohamed Ahmed AE. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front Pharmacol 2022; 13:905755. [PMID: 35847041 PMCID: PMC9283906 DOI: 10.3389/fphar.2022.905755] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Shikonin and its derivatives, isolated from traditional medicinal plant species of the genus Lithospermum, Alkanna, Arnebia, Anchusa, Onosma, and Echium belonging to the Boraginaceae family, have numerous applications in foods, cosmetics, and textiles. Shikonin, a potent bioactive red pigment, has been used in traditional medicinal systems to cure various ailments and is well known for its diverse pharmacological potential such as anticancer, antithrombotic, neuroprotective, antidiabetic, antiviral, anti-inflammatory, anti-gonadotropic, antioxidants, antimicrobial and insecticidal. Herein, updated research on the natural sources, pharmacology, toxicity studies, and various patents filed worldwide related to shikonin and approaches to shikonin’s biogenic and chemical synthesis are reviewed. Furthermore, recent studies to establish reliable production systems to meet market demand, functional identification, and future clinical development of shikonin and its derivatives against various diseases are presented.
Collapse
Affiliation(s)
- Snehlata Yadav
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Chandigarh- Ludhiana Highway, Mohali, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian, Srinagar, India
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Garima Bhardwaj
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, India
| | | | - Vishal Mutreja
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ramandeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Mohannad AlOudat
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences, Budapset, Hungary
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Abdelhakam Esmaeil Mohamed Ahmed,
| |
Collapse
|
20
|
Tang Y, Wang Y, Wang X, Zhao Z, Cai H, Xie M, Jiang X, Zhang L, Cheng J, Yang L, Wang L, Zhao C, Huang X. Acetylshikonin exerts anti-tumor effects on non-small cell lung cancer through dual inhibition of STAT3 and EGFR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154109. [PMID: 35526322 DOI: 10.1016/j.phymed.2022.154109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lung cancer is one of the most common types of malignant tumor. It has one of the highest morbidity and mortality rates worldwide, and approximately 85% of cases are non-small cell lung cancer (NSCLC). Clinically, several EGFR inhibitors have been used to treat NSCLC, but resistance can develop. Studies have shown that cross talk between signal transducer and activator of transcription 3 (STAT3) and epidermal growth factor receptor (EGFR) can mediate drug resistance. Acetylshikonin has obvious antitumor effects, but the mechanism of action is still unclear. PURPOSE To analyze the antitumor activity of acetylshikonin in lung cancer and clarify its molecular mechanism. METHODS Methyl thiazolyl tetrazolium (MTT), colony formation and 5-ethynyl-2'-deoxyuridine (EDU) assays were performed to examine the effects of acetylshikonin in inhibiting the proliferation of NSCLC cells (PC-9, H1975 and A549). Scratch wound and transwell assays were used to evaluate the migration and invasion of NSCLC cells. Flow cytometry was employed to determine whether acetylshikonin could induce apoptosis. Proteome sequencing was used to identify the targets of acetylshikonin. Immunofluorescence staining and western blotting were utilized to verify the inhibition of STAT3 and EGFR phosphorylation. A xenotransplantation model was established to evaluate the efficacy of acetylshikonin in nude mice. RESULTS Our data demonstrated that acetylshikonin significantly decreased the survival rate of human NSCLC cells, increased the apoptotic rate and inhibited cell migration dose-dependently. Immunofluorescence staining and western blotting analyses revealed that acetylshikonin inhibited EGFR and STAT3 pathways. Acetylshikonin also inhibited tumor growth in a xenograft model better than inhibitors of EGFR and STAT3. CONCLUSION Acetylshikonin has anti-cancer effects on NSCLC cells by inhibiting EGFR and STAT3, indicating that acetylshikonin may be a new antitumor drug to treat NSCLC.
Collapse
Affiliation(s)
- Yemeng Tang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yanmao Wang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xian Wang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhucheng Zhao
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haijian Cai
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengyao Xie
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xintong Jiang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Luyao Zhang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiayun Cheng
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lehe Yang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Liangxing Wang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Chengguang Zhao
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Building 11, Chashan Street, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
21
|
Lohberger B, Kaltenegger H, Eck N, Glänzer D, Sadoghi P, Leithner A, Bauer R, Kretschmer N, Steinecker-Frohnwieser B. Shikonin Derivatives Inhibit Inflammation Processes and Modulate MAPK Signaling in Human Healthy and Osteoarthritis Chondrocytes. Int J Mol Sci 2022; 23:ijms23063396. [PMID: 35328817 PMCID: PMC8955849 DOI: 10.3390/ijms23063396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder and is characterized by the degeneration of articular cartilage. To develop new therapeutic approaches, we investigated the effect of shikonin derivatives on inflammation, MMP expression, and the regulation of MAPK signaling in human healthy (HC) and OA chondrocytes (pCH-OA). Viability was analyzed using the CellTiter-Glo® Assay. Inflammatory processes were investigated using a proteome profiler™ assay. Furthermore, we analyzed the effects of the shikonin derivatives by protein expression analysis of the phosphorylation pattern and the corresponding downstream gene regulation using RT-qPCR. Both HC and pCH-OA showed a dose-dependent decrease in viability after treatment. The strongest effects were found for shikonin with IC50 values of 1.2 ± 0.1 µM. Shikonin counteracts the inflammatory response by massively reducing the expression of the pro-inflammatory mediators. The phosphorylation level of ERK changed slightly. pJNK and pp38 showed a significant increase, and the downstream targets c/EBPs and MEF2c may play a role in the cartilage homeostasis. STAT3 phosphorylation decreased significantly and has a chondroprotective function through the regulation of cyclin D1 and Sox9. Our results demonstrate for the first time that shikonin derivatives have extensive effects on the inflammatory processes, MAPKs, and IL6/STAT3 downstream regulation in healthy and OA chondrocytes.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (B.L.); (H.K.); (N.E.); (D.G.); (P.S.); (A.L.)
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstr. 8, 8010 Graz, Austria; (R.B.); (N.K.)
| | - Heike Kaltenegger
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (B.L.); (H.K.); (N.E.); (D.G.); (P.S.); (A.L.)
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (B.L.); (H.K.); (N.E.); (D.G.); (P.S.); (A.L.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Thorerstraße 26, 5760 Saalfelden, Austria
| | - Dietmar Glänzer
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (B.L.); (H.K.); (N.E.); (D.G.); (P.S.); (A.L.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Thorerstraße 26, 5760 Saalfelden, Austria
| | - Patrick Sadoghi
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (B.L.); (H.K.); (N.E.); (D.G.); (P.S.); (A.L.)
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (B.L.); (H.K.); (N.E.); (D.G.); (P.S.); (A.L.)
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstr. 8, 8010 Graz, Austria; (R.B.); (N.K.)
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstr. 8, 8010 Graz, Austria; (R.B.); (N.K.)
| | | |
Collapse
|
22
|
Valipour M. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action. Eur J Med Chem 2022; 235:114314. [DOI: 10.1016/j.ejmech.2022.114314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
|
23
|
Kaur K, Singh A, Sharma H, Punj S, Bedi N. Formulation Strategies and Therapeutic Applications of Shikonin and Related Derivatives. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:55-67. [PMID: 35236278 DOI: 10.2174/2667387816666220302112201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Shikonin and its derivatives are excellent representatives of biologically active naphthoquinones. A wide range of investigations carried out in the last few decades validated their pharmacological efficacy. Besides having magnificent therapeutic potential, shikonin and its derivatives suffer from various pharmacokinetic, toxicity, and stability issues like poor bioavailability, nephrotoxicity, photodegradation, etc. Recently, various research groups have developed an extensive range of formulations to tackle these issues to ease their path to clinical practice. The latest formulation approaches have been focused on exploiting the unique features of novel functional excipients, which in turn escalate the therapeutic effect of shikonin. Moreover, the codelivery approach in various drug delivery systems has been taken into consideration in a recent while to reduce toxicity associated with shikonin and its derivatives. This review sheds light on the essential reports and patents published related to the array of formulations containing shikonin and its derivatives.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Hamayal Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sanha Punj
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
24
|
Flau-A, a naphthoquinone derivative, is a promising therapeutic candidate against visceral leishmaniasis: A preliminary study. Exp Parasitol 2021; 233:108205. [PMID: 34968460 DOI: 10.1016/j.exppara.2021.108205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/30/2021] [Accepted: 12/25/2021] [Indexed: 11/21/2022]
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease found in tropical and subtropical regions in the world. The therapeutics used for the treatment against disease presents problems, mainly related to drug toxicity, route of administration, high cost and/or by emergence of resistant strains. In this context, the search for alternative antileishmanial candidates is desirable. Recently, a naphthoquinone derivative namely 2-(2,3,4-tri-O-acetyl-6-deoxy-β-L-galactopyranosyloxy)-1,4-naphthoquinone or Flau-A showed an effective in vitro biological action against Leishmania infantum. In the present study, the efficacy of this naphthoquinone derivative was evaluated in an in vivo infection model. BALB/c mice (n = 12 per group) were infected and later received saline or were treated with empty micelles (B/Mic), free Flau-A or it incorporated in Poloxamer 407-based micelles (Flau-A/Mic). The products were administered subcutaneously in the infected animals, which were then euthanized one (n = 6 per group) and 15 (n = 6 per group) days post-therapy, when immunological and parasitological evaluations were performed. Results showed that animals treated with Flau-A or Flau-A/Mic produced significantly higher levels of antileishmanial IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and IgG2a isotype antibody, when compared to data found in the control (saline and B/Mic) groups; which showed significantly higher levels of parasite-specific IL-4, IL-10 and IgG1 antibody. In addition, animals receiving free Flau-A or Flau-A/Mic presented also significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, when compared to the controls. A low hepatic and renal toxicity was also found. Overall, Flau-A/Mic showed better immunological and parasitological results, when compared to the use of free molecule. In conclusion, preliminary data suggest that this composition could be considered in future studies as promising therapeutic candidate against VL.
Collapse
|